

ASP.NET Core 5 for
Beginners

Kick-start your ASP.NET web development journey
with the help of step-by-step tutorials and examples

Andreas Helland

Vincent Maverick Durano

Jeffrey Chilberto

Ed Price

BIRMINGHAM—MUMBAI

ASP.NET Core 5 for Beginners
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.
Commissioning Editor: Richa Tripathi
Acquisition Editor: Denim Pinto
Senior Editor: Rohit Singh
Content Development Editor: Kinnari Chohan
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Alishon Mendonsa

First published: December 2020

Production reference: 1171220

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80056-718-4

www.packt.com

http://www.packt.com

This book is dedicated to my family, for allowing me to spend countless hours in front of my
computers both growing up and to this day, not to mention accepting the joys of me having a
home lab – couldn’t have done it without you!

Andreas Helland

I dedicate this book to my kids: Vianne Maverich, Vynn Markus, and Vjor Morrison. To my
wife, Michelle Anne, who’s always supported my hustle, drive, and ambition. I love you!

Vincent Maverick Durano

This book is dedicated to all the individuals that have influenced me in my career. From
California to Vienna to Auckland, they have supported me, challenged me, and helped shape
me.

Jeffrey Allan Chilberto

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

Contributors

About the authors
Andreas Helland has a degree in software engineering and 20 years of experience in
building products and services. He has worked both with the development side and the
infrastructure side and holds a number of Microsoft certifications across both skill sets.
This background led him to become an early adopter of Azure and the cloud.

After building up his knowledge working in the telecommunications industry, he switched
to consulting, and he currently works as an architect for Capgemini, where he assists
customers with utilizing the cloud in the best ways possible. He specializes in Azure
Active Directory and works closely with the Identity teams at Microsoft, both in testing
new services and providing feedback based on learnings from the field.

I want to thank Ed for roping me in on this project – of course there’s time
available to write a book! Thanks to Vince and Jeffrey for bringing in their

content and perspectives – it would have been a thin (and less exciting)
book if it was only me doing the writing. I enjoyed working with you!

Thanks to Packt for making sure there’s been plenty to do when we have to
spend most of our time at home – books are the perfect companion activity

for that.

Vincent Maverick Durano works as a software engineer/architect at an R&D company
based in Minnesota. His jobs include designing software, building products and services
that impact the lives of people. He’s passionate about learning new technologies, tackling
challenges, and sharing his expertise through writing articles and answering forums. He
has authored several books and has over 15 years of software engineering experience.
He has contributed to OSS projects and founded AutoWrapper and ApiBoilerPlate. He
is a 10-time Microsoft MVP, 5-time C# Corner MVP, 3-time CodeProject MVP, and
a contributor to various online technical communities. He’s from the Philippines and
married to Michelle and has three wonderful children – Vianne, Vynn, and Vjor.

I want to thank Ed for bringing me on board to be part of this book and to
my other co-authors: Andreas and Jeff – you guys are awesome! It was fun

and a great experience working with you. To Kinnari, Francy, and the Packt
team – thank you!

Jeffrey Chilberto is a software consultant specializing in the Microsoft technical stack,
including Azure, BizTalk, ASP.NET, MVC, WCF, and SQL Server, with experience in a
wide range of industries, including banking, telecommunications, and healthcare in the
United States, Europe, Australia, and New Zealand.

Special thanks to Kinnari, Francy, and the Packt Team for the drive and
support; Andreas for his leadership and vision; Vince for his dedication and
measured advice; and Ed for bringing the authors together, his wit, and his

contributions to the ASP.NET community.
Ed Price is a senior program manager in engineering at Microsoft, with an MBA in
technology management. He has run Microsoft customer feedback programs for Azure
development, Service Fabric, IoT, and Visual Studio. He was also a technical writer
at Microsoft for 6 years, helped lead TechNet Wiki, and now leads efforts to publish
Microsoft’s Reference Architectures on the Azure Architecture Center (focusing on web
development scenarios). He is the co-author of four books, including Learn to Program
with Small Basic and Hands-On Microservices with C# and .NET Core 3, Third Edition
(from Packt).

What do you do when the world is quarantined in 2020 from COVID-
19? You write a book! I want to thank the ASP.NET community and my
amazing partners on this book: Andreas for being our technical leader,

Vince for joining us last (only to show us up by providing the most content),
and Jeffrey for being our rock and anchor (and for writing amazing run-on

sentences in his biography).

About the reviewers
Adwait Ullal is a technology consultant based in Silicon Valley. He works with Fortune
500 companies to provide cloud and enterprise architecture guidance. Adwait’s prior
experience includes application and solutions architecture, specializing in Microsoft
technologies. Adwait has presented on cloud and enterprise architecture topics at local
code camps and meetups.

Francis Emefile is a software developer from Nigeria. It has always fascinated him how
collaboration coupled with technology is capable of achieving great results. While at
university studying electrical/electronic engineering, he gravitated towards computer
programming out of curiosity and necessity. With the idea of building a hub where
students could get information around campus, he soon discovered that his technical
skill was not enough to bring his idea to life, so he taught himself programming. After
graduation, he got a job as a software developer and has been building impactful and
exciting products ever since. He is presently working with a bank, where he crafts code
with an amazing team to build solutions for the bank’s huge customer base.

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Preface

Section 1 – Crawling

1
Introduction to ASP.NET Core 5

Technical requirements� 18
Explaining ASP.NET Core� 18
Managed versus unmanaged code� 19
Introducing the .NET platform� 20
Supportability strategy� 25

Refreshing your C# knowledge� 26
What's new in .NET 5?� 36
What's new in C# 9?� 37

Understanding websites and
web servers� 45

Web server configuration� 46
Certificate trust� 46
Session stickiness� 47
Troubleshooting communication with
web servers� 48
Choosing a web server option� 50

Exploring Visual Studio Code� 52
Leveraging Windows Terminal� 54
Summary� 56
Questions� 56
Further reading� 57

2
Cross-Platform Setup

Technical requirements� 60
Leveraging the .NET framework� 60
Why cross-platform?� 61
Why not cross-platform?� 61
Combining cross-platform and single-
platform code� 62
.NET cross-platform availability� 63

What cross-platform does not do for you�63

Getting started on Windows,
Linux, and macOS� 64
Windows� 64
Linux� 64
Windows Subsystem for Linux (WSL)� 65

Table of Contents

ii Table of Contents

macOS� 73
A word on cross-platform and containers�79
Making your code cross-platform� 80
A more complicated cross-platform
example� 85
Self-contained .NET apps� 93
Cross-platform for mobile devices� 95

Debugging Linux on Windows
with Visual Studio 2019� 104
Summary� 108
Questions� 108
Appendix� 109
Installing your app as a Windows
service – the advanced method� 109

3
Dependency Injection

Technical requirements� 112
Learning dependency injection
in ASP.NET Core� 112
Understanding what DI is� 113
The common dependency problem� 115
Registering the service� 123
Benefits of DI� 124

Reviewing types of dependency
injection� 124
Constructor injection� 125
Method injection� 126
Property injection� 130
View injection� 134

Understanding dependency
injection containers� 136

Understanding dependency
lifetimes� 140
Transient service� 140
Scoped service� 144
Singleton service� 146

Handling complex scenarios� 148
Service descriptors� 148
Add versus TryAdd� 150
Dealing with multiple service
implementations� 152
Replacing and removing service
registrations� 153

Summary� 154
Questions� 155
Further reading� 155

4
Razor View Engine

Technical requirements� 159
Understanding the Razor view
engine� 160
Reviewing the Razor view engine� 161

Learning the basics of Razor
syntax� 162

Rendering simple data� 163
Rendering data from a view model� 166
Introduction to HTML helpers and tag
helpers� 169

Building a to-do application
with MVC� 173

Table of Contents iii

Understanding the MVC pattern� 174
Creating an MVC application� 175
Running the app for the first time� 180
Configuring in-memory databases� 181
Creating the to-do controller� 186
Creating a view� 187
Running the to-do app� 188
Implementing add item functionality� 189
Implementing edit functionality� 193

Building a to-do app with Razor

Pages� 197
Reviewing Razor Pages� 197
Creating a Razor Pages application� 198
Understanding the Razor Pages
structure� 199
Creating the to-do pages� 200

Differences between MVC and
Razor Pages� 205
Summary� 206
Further reading� 206

5
Getting Started with Blazor

Technical requirements� 210
Understanding the Blazor web
framework� 210
Reviewing the different flavors of Blazor�211

Five players, one goal� 216
Building a tourist spot
application� 217
Creating the backend

application � 218
Configuring an in-memory database� 220
Implementing real-time functionality
with SignalR� 227
Creating the API endpoints� 229

Summary� 236
Questions� 236
Further reading� 237

Section 2 – Walking

6
Exploring the Blazor Web Framework

Creating the Blazor Server
project� 242
Creating the model� 246
Implementing a service for web API
communication� 246
Implementing the application state� 250

Creating Razor components� 251
Running the application� 265

Creating the Blazor Web
Assembly project� 269
Creating the model� 271
Composing the Index component� 272

iv Table of Contents

Running the application� 276
Uninstalling the PWA app� 278

Summary� 279
Further reading� 279

7
APIs and Data Access

Technical requirements� 282
Understanding Entity
Framework Core� 283
Reviewing EF Core design workflows� 284

Learning database-first
development� 285
Creating a .NET Core console app� 286
Integrating Entity Framework Core� 286
Creating a database� 287
Generating models from an existing
database� 287
Performing basic database operations� 291

Learning code-first
development� 296
Reviewing ASP.NET Core Web API� 296
Creating a Web API project� 296
Configuring data access� 297
Managing database migrations� 302
Reviewing DTO classes� 305
Creating Web API endpoints� 305

Summary� 329
Further reading� 329

8
Working with Identity in ASP.NET

Technical requirements� 332
Understanding authentication
concepts� 332
Base64 encoding� 333
How hashing works� 335

Understanding authorization
concepts� 336
The role of middleware in ASP.
NET and identity� 342
OAuth and OpenID Connect
basics� 345
JSON web tokens� 345
How to generate/issue a token� 347
How to validate a token� 350

Integrating with Azure Active
Directory� 357
Understanding single tenancy versus
multi-tenancy� 362
Understanding consent and
permissions� 363

Working with federated identity	
� 368
Summary� 373
Questions� 373
Further reading� 373

Table of Contents v

9
Getting Started with Containers

Technical requirements� 376
Hardware virtualization� 377

Overview of containerization� 381
Getting started with Docker� 383
What is Docker?� 383
Installing Docker� 387
Windows Security Alert� 388

Running Redis on Docker� 389
Starting Redis� 389

Running ASP.NET Core in a
container� 392
Accessing Redis� 394
Adding container support� 397
Docker multi-container support� 402

Summary� 413
Questions� 413
Further reading� 414

Section 3 – Running

10
Deploying to AWS and Azure

Technical requirements� 418
Working with AWS� 419
Working with Azure� 420
GitHub source code� 421

Overview of cloud computing� 421
Cloud computing models � 422
Cloud computing providers� 422

Creating a sample ASP.NET
Core web application� 423
Adding a health endpoint� 429

Publishing to AWS� 433
Creating a user for publishing from
Visual Studio� 434
Publishing from AWS� 440

Publishing to Azure� 447
Using the Publish wizard in Azure� 448
Azure next steps� 459

Summary� 459
Questions� 460
Further reading� 460

11
Browser and Visual Studio Debugging

Technical requirements� 462
Browser� 463

GitHub source� 463

vi Table of Contents

Setting up the sample
application� 463
Creating a progressive web application� 463
Saving the state of an application� 466
Understanding PWAs� 467
Accessing browser session and local
storage� 467

Using debugging tools in the
browser� 480
The Elements tab� 481
The Console tab� 484
The Sources tab� 486

The Network tab� 488
The Application tab� 489

Debugging in Visual Studio� 491
Controlling the application launch and
target� 492
Logging activity� 494
Setting a breakpoint� 497
Using conditional breakpoints� 501

Summary� 502
Questions� 502
Further reading� 503

12
Integrating with CI/CD

Technical requirements� 506
An overview of CI/CD� 506
Understanding why CI/CD� 506

Introducing GitHub� 510
Is GitHub free?� 510
Some Git terminology� 511
Making a copy of the repo� 512
GitHub support for CI/CD� 512

Building CI/CD using GitHub
Actions � 513
What is GitHub Pages?� 513

Creating a CI/CD workflow � 515
Creating a continuous integration job� 516
Creating a continuous deployment job� 519
Monitoring actions� 521
Configuring GitHub Pages� 522
Fixing the base reference� 525
Logging the CI/CD workflow� 526
Next steps with GitHub Actions� 528

Summary� 531
Questions� 532
Further reading� 532

13
Developing Cloud-Native Apps

Technical requirements� 536
What makes an application
cloud-native?� 536
Comparing characteristics of on-
premises versus the cloud� 539

Monolithic versus microservices
architecture� 539
Planning for scalability� 540
Working with different database types� 541
Synchronicity and multi-processing
tasks� 543

Table of Contents vii

Avoiding failure versus expecting failure�544
Understanding cloud update schedules� 545
Administration of servers and services� 546
Pets versus cattle� 546

Understanding the role of
DevOps� 548
Understanding cost in the cloud�553
Cloud storage versus local disk� 554
Ephemeral versus persistent storage� 555
Storing and reading files in Azure Blob
storage� 555

Dealing with storage latency� 559

Introducing Infrastructure as
Code (IaC)� 559
Imperative IaC� 560
Declarative IaC� 560

Learning about monitoring and
health� 562
Summary� 565
Questions� 565
Further reading� 565

Assessments

Chapter 1 – Introduction to ASP.
NET Core 5� 567
Chapter 2 – Cross-Platform
Setup� 567
Chapter 3 – Dependency
Injection� 568
Chapter 5 – Getting Started
with Blazor� 569
Chapter 8 – Working with
Identity in ASP.NET� 569

Chapter 9 – Getting Started
with Containers� 569
Chapter 10 – Deploying to AWS
and Azure� 570
Chapter 11 – Browser and
Visual
Studio Debugging� 570
Chapter 12 – Integrating with
CI/CD� 570
Chapter 13 – Developing Cloud-
Native Apps� 571

Other Books You May Enjoy
Index

Preface
ASP.NET Core is a powerful and effective framework that's open source and cross-
platform. It helps you build cloud-ready, modern applications, such as web apps and
services. Complete with hands-on tutorials, projects, and self-assessment questions,
ASP.NET Core 5 for Beginners is an easy-to-follow guide that will teach you how to
develop using the ASP.NET Core 5 framework. You'll learn about the framework using
C# 8, Visual Studio 2019, Visual Studio Code, Razor Pages, Blazor, Kestrel, IIS, HTTP.sys,
Apache, Docker, AWS, and Azure.

You'll learn how to write applications, build websites, and deploy your web apps to
AWS and Microsoft Azure. You will thoroughly explore your coding environment and
recommended best practices, and we'll provide code samples to systematically cover the
top scenarios that you'll face in the industry today. By the end of this book, you'll be able
to leverage ASP.NET Core 5 to build and deploy web applications and services in a variety
of real-world scenarios.

Who this book is for
This book is for developers who want to learn how to develop web-based applications
using the ASP.NET Core framework. Familiarity with the C# language and a basic
understanding of HTML and CSS is required to get the most out of this book.

x Preface

What this book covers
Chapter 1, Introduction to ASP.NET Core 5, provides a short history lesson, going from
.NET 1.0 via different paths to "one .NET to rule them all" with .NET Core, and how ASP
.NET Core fits on top of that. There are a lot of terms that we'll cover and explain. There
are also several tools that will be valuable for you as you move throughout this book, so
we'll introduce a couple of these here.

Chapter 2, Cross-Platform Setup, explains how, given that .NET Core is not limited to
running on Windows, developing on Linux and Mac is not an obstacle to building .NET
apps. For Linux, the latest Windows 10 feature update provides an excellent developer
companion with Windows Subsystem for Linux 2, which enables you to run natively on
Linux and to debug from Windows. There are a couple of things that you'll need to be
aware of when going cross-platform, and these details will be pointed out in this chapter.

Chapter 3, Dependency Injection, explains the dependency injection (DI) software design
pattern and demonstrates how to use it to achieve inversion of control (IoC) between
classes and their dependent classes. We'll cover the framework services, and we'll explain
the service lifetimes and registration methods. Finally, you'll learn how to design services
for DI.

Chapter 4, Razor View Engine, explains the concept whereby coding a page could become
easier and more productive than ever before and you'll learn how Razor powers the
different ASP.NET Core web frameworks to generate HTML markup (by using a unified
markup syntax). To get a feel for the different web frameworks, you'll build a simple
To-Do list application using Model View Controller (MVC) and Razor Pages to create a
dynamic web app. In addition, you'll learn the pros and cons of each web framework.

Chapter 5, Getting Started with Blazor, explains how it's time to get familiar with a
framework that enables you to build an interactive web UI with .NET. You can write with
C# with JavaScript (and instead of JavaScript). You can share your server-side and client-
side app logic that's written in .NET, and you can render your UI as HTML and CSS
(which is great for mobile browsers). We'll kick things off by understanding the different
Blazor hosting models for building powerful web applications and weigh their pros and
cons. We'll then take a look at the high-level objective to achieve the goal of using cutting-
edge technologies to build a real-world application. In this chapter, you'll be using Blazor
to create a Tourist Spot application with real-time capabilities. You'll start building the
backend side of the application using an ASP.NET Core Web API in concert with Entity
Framework Core, and finally you'll set up real-time updates using SignalR.

Preface xi

Chapter 6, Exploring Blazor Web Frameworks, puts together the remaining pieces to
complete the goal highlighted in chapter 5 , Getting Started with Blazor. In this chapter,
you'll be creating two different web applications using the different Blazor hosting models:
Blazor Server and Blazor Web Assembly. This chapter is the heart of the book, where you
experience what it's like to build different applications, using various technologies that
connect to one another. The step-by-step code examples and visual illustrations make this
chapter fun, exciting, and easy to follow.

Chapter 7, APIs and Data Access, takes you on a tour, as we explore how APIs and data
access work together to achieve two main goals: serving and taking data. We'll take
you on a whirlwind tour of Entity Framework, REST APIs, Database Management
Systems (DBMSes), SQL, LINQ, and Postman. We'll start by understanding the different
approaches when working with real databases in Entity Framework Core (EF Core). We
will then look at how to use EF Core with an existing database, and we'll implement APIs
that talk to a real database using EF Core's code-first approach. You will build an ASP.NET
Core Web API application in concert with Entity Framework Core to perform basic data
operations in a SQL Server database. You will also implement the most commonly used
HTTP methods (verbs) for exposing some API endpoints and we'll perform some basic
testing.

Chapter 8, Identity, aims to teach the basics of the concept of identity in an application,
both from the frontend (how a user authenticates) and how the backend validates this
identity. It will explain different methods, such as basic auth and claims-based auth,
as well as introducing a modern identity suite (Azure AD). The major OAuth 2 and
OpenID Connect flows will be explained to give an understanding of which to use in your
applications.

Chapter 9, Containers, introduces the concept of breaking up monoliths and we'll provide
a basic understanding of why everybody seems to be talking about containers today.

Chapter 10, Deploying to AWS and Azure, explains what is meant when we say that
ASP.NET was born to be deployed to the cloud, and then we'll explore a few platforms,
including Amazon Web Services (AWS) and Microsoft Azure (and we'll explain why
we're focusing on these two platforms). Then, we'll delve in and show you how to get your
project deployed (in a quick and basic way) on both AWS and Azure!

Chapter 11, Browser and Visual Studio Debugging, covers some of the great features
available in modern browsers for detecting the cause of errors and how to troubleshoot
issues. We'll also look at Visual Studio's support for debugging, and how the IDE can
make you a better programmer.

xii Preface

Chapter 12, Integrating with CI/CD, goes into the tools and practices that programmers
should be familiar with in the modern DevOps world.

Chapter 13, Cloud Native, explains how, given that a lot of job descriptions these days
include the word cloud, and while not all code produced will be run in a public cloud, it is
necessary to understand both what cloud native means, as well as which steps are involved
in designing applications to take advantage of cloud capabilities. This could be cloud
storage versus local disk, scaling up versus scaling out, and how some tasks previously
handled by Ops are now the developer's responsibility. By the end of this chapter, you
should understand why performing the lift and shift of an existing app is a lot different
than starting out in the cloud.

To get the most out of this book
You are assumed to have basic working knowledge of the C# language. All code has been
tested on Windows 10, where exceptions are noted. The main software used in this book
is Visual Studio Code and Visual Studio 2019, both of which can be downloaded for free
from Microsoft. The specific instructions can be found in the chapters:

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at http://bit.ly/3qDiqYY.

https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners
https://github.com/PacktPublishing/
http://bit.ly/3qDiqYY

Preface xiii

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

https://static.packt-cdn.com/downloads/9781800567184_
ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The preceding code renders the App.razor component with
ServerPrerendered as the default rendering mode."

A block of code is set as follows:

<body>

 <app>

 <component type="typeof(App)"
 render-mode="ServerPrerendered" />

 </app>

 @*Removed other code for brevity*@

</body>

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

 <script src="_framework/blazor.webassembly.js"></script>

 <script src="storageHandling.js"></script>

</body>)

Any command-line input or output is written as follows:

dotnet run
Base64 encoded: YW5kcmVhczpwYXNzd29yZA==
Response: Hello Andreas

https://static.packt-cdn.com/downloads/9781800567184_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800567184_ColorImages.pdf

xiv Preface

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select the ASP.NET Core Web Application template and click on Next."

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1 –
Crawling

In this section, you will learn the basics of .NET Core 5, including an overview, goals/
values, new features, and its history. We’ll also help you refresh your C# skills, and we’ll
cover setting up your cross-platform environment, as well as building apps and pages with
CSHTML, MVC, Razor Pages, and Blazor (by using a unified markup engine—Razor).
Finally, we’ll explain the dependency injection software design pattern.

This section includes the following chapters:

•	 Chapter 1, Introduction to ASP.NET Core 5

•	 Chapter 2, Cross-Platform Setup

•	 Chapter 3, Dependency Injection

•	 Chapter 4, Razor View Engine

•	 Chapter 5, Getting Started with Blazor

1
Introduction to
ASP.NET Core 5

.NET 5 is the latest and greatest in the .NET platform. .NET 5 is the successor of .NET
Core 3.1 This chapter takes a short tour through the history of the .NET Framework
before diving into what this version brings to the table. The chapter wraps up with a look
at utilities and tools you will want to have before proceeding with exploring the details in
the chapters that follow. We will cover a broad range of topics, including cross-platform
usage of .NET, different methods for creating the visual layer, backend components such
as identity and data access, as well as cloud technologies.

We will cover the following topics in this chapter:

•	 Explaining ASP.NET Core

•	 C# refresher

•	 What's new with .NET 5 and C# 9

•	 Websites and web servers

•	 Visual Studio Code

•	 Windows Terminal

4 Introduction to ASP.NET Core 5

Technical requirements
This chapter includes short code snippets to demonstrate the concepts that are explained.
The following software is required:

•	 Visual Studio 2019: Visual Studio can be downloaded from https://
visualstudio.microsoft.com/vs/community/. The Community edition
is free and will work for the purposes of this book.

•	 Visual Studio Code: Visual Studio Code can be downloaded from
https://code.visualstudio.com/Download.

•	 .NET Core 5: The .NET Core framework can be downloaded from https://
dotnet.microsoft.com/download/dotnet/5.0.

Make sure you download the SDK, and not just the runtime. You can verify the
installation by opening Command Prompt and running the dotnet --info cmd as
shown:

Figure 1.1 – Verifying the installation of .NET

Please visit the following link to check the CiA videos: https://bit.ly/3qDiqYY

Check out the source code for this chapter at https://github.com/
PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/
Chapter%2001/Chapter_01_HelloWeb.

Explaining ASP.NET Core
The first version of .NET was released in 2002, so it doesn't sound impressive that we're
at version 5 since it's been 18 years later does not sound all that impressive. However, it is
slightly more complicated than that, both with the numbering system and due to various
sidetracks. A complete history could possibly be a book on its own, but to understand
where we are now, we will take you on a short walk down memory lane.

https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://code.visualstudio.com/Download
https://dotnet.microsoft.com/download/dotnet/5.0
https://dotnet.microsoft.com/download/dotnet/5.0
https://bit.ly/3qDiqYY
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2001/Chapter_01_HelloWeb
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2001/Chapter_01_HelloWeb
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2001/Chapter_01_HelloWeb

Explaining ASP.NET Core 5

When .NET came on the scene, there were a couple of options available to you for
choosing a programming language depending on your scenario. Visual Basic was popular
for introductory type programming since it was, as the name implies, visually oriented
and easy to get started with. However, VB wasn't great for writing complex applications
at scale with high performance, however, was not a strength of the language. Windows
itself was mostly written in C and C++ and was the preferred route for professional-grade
software. While these languages were (and still are) highly capable, they were notorious
for allowing the programmer to shoot themselves in the foot due to things such as making
the coder responsible for memory management and other low-level operations that were
hard to debug and troubleshoot.

In parallel with the language implementations offered directly from Microsoft, Sun
Microsystems released Java as a solution to these challenges. Instead of producing native
code, the tooling produced managed code that abstracted memory management and
made things easier. The syntax of the language was in the C++ style, so transitioning was
not that hard for developers who wanted it. It was also a stated goal that the code written
should be portable to multiple platforms. This was enabled by a Java Virtual Machine
(JVM), which was installed to execute on a given system.

Managed versus unmanaged code
Programming languages have evolved over the years. Where the first computers were
programmed by physically turning switches and levers, you can now write instructions
where even non-programmers are able to figure out what some of the commands mean.

One often refers to the relative closeness to the computer's native language (zeros and
ones) by calling a language low-level (close) or high-level (abstract). At the lowest level,
you have languages like assembler language, which theoretically have the least overhead
(provided you can find highly talented programmers), but in addition to being complex,
an assembler language is not portable across different CPU architectures. C# is more
towards the other end of the spectrum, with more natural language and many of the "hard
things" are hidden from the programmer. And there are also languages that are even more
high-level, such as Scratch (a block-based language), targeted at kids wanting to get into
programming. (There is no formal definition of low versus high.)

6 Introduction to ASP.NET Core 5

One of the mechanisms C# uses to achieve this is by having an intermediate layer (for
.NET this is the Common Language Runtime) that translates your code in real time to the
underlying machine code understood by your computer. This means that the programmer
does not need to handle allocating and releasing memory, does not interfere with other
program's processes, and so on, and generally does a lot of the grunt work. With .NET
Core, this is a crucial part in being able to handle cross-platform execution – without this
middleman, the code written for your Windows laptop would not run on your mobile
phone without recompilation and platform-specific adjustments.

The concept is not new to or unique for C#, and it is also the concept used in Java.
Originally, it was conceived back in the IBM mainframe era. On personal computers,
it was initially challenging since managed code will always have an overhead due to the
translation that occurs, and on resource-constrained computers (when .NET 1.0 was
released), it can run slow. Newer computers handle this much more efficiently, and .NET
has been optimized over the years, so for most applications, it is not much of an issue any
longer if the code is managed or not.

Introducing the .NET platform
Microsoft took inspiration from Java, as well as their learnings from the ecosystem they
provided, and came up with .NET. The structure of the platform is displayed in Figure 1.2.

.NET was also based on managed code and required a Common Language Runtime
(CLR) to be installed to execute. The C# language was released in the same time frame,
but .NET also supported Visual Basic and J#, highlighting that it was a more generic
framework. Other programming languages that required extra software to be installed
for running applications had the challenge of getting end users to install it themselves.
Microsoft, on the other hand, had the advantage of supplying the operating system, thus
giving them the option of including .NET as a pre-installed binary.

Explaining ASP.NET Core 7

Figure 1.2 – The .NET platform

.NET Framework was, as the second part of the name implies, intended to be more
complete than dictating that a certain language must be used and can only be used for
specific types of applications, so it was modular by nature. If you wanted to create an
application running as a Windows service, you needed other libraries than an application
with a graphical user interface, but you could do it using the same programming language.

The original design of .NET Framework did not technically exclude running on other
operating systems than Windows, but not seeing the incentive to provide it for Linux and
Apple products, it quickly took dependencies on components only available on desktop
Windows.

While Windows ran nicely on x86-based PCs, it did not run on constrained devices.
This led Microsoft to develop other versions of Windows such as Windows Mobile for
smartphones, Windows CE for things such as ATMs and cash registers, and so on. To
cater to the developers and enable them to create applications with a minimal re-learning
experience, .NET was in demand for these platforms, but .NET was not built to run
without the desktop components available. The result was .NET being split into multiple
paths where you had .NET Compact Framework for smartphones and tablets and .NET
Micro Framework for Arduino-like devices.

8 Introduction to ASP.NET Core 5

Essentially, if you were proficient in C#, you could target millions of devices in multiple
form factors. Unfortunately, it was not always that easy in the real world.

The libraries were different. If you wrote your code on the desktop and wanted to port it
to your mobile device, you had to find out how to implement functionality that was not
present in the Compact version of .NET. You could also run into confusing things such as
an XML generator being present on both platforms, and even though they looked similar,
the output generated was not.

.NET Framework was released along with Windows operating systems, but often this was
not the newest version, so you still had to install updates for it to work or install additional
components.

Even worse was when you had to run multiple versions of .NET on the same machine,
where it was frequently the case that these would not play nicely with each other and you
had to make sure that your application called into the right version of the libraries. While
originating with C++ on Windows, the challenge carried over to .NET and you may have
heard this being referred to as "DLL Hell."

This book uses the term ASP in the title as well (ASP.NET). ASP has a track of its own
in this history lesson. In the olden days of Windows NT, rendering web pages was not
a core component for a server but could be installed through an add-on called Active
Server Pages (ASP for short) on top of Internet Information Server. When .NET was
released, this was carried over as ASP.NET. Much like the base components of .NET, this
has also seen multiple iterations in various forms over the years. Initially, you had ASP.
NET Web Forms, where you wrote code and scripts that the engine rendered as HTML for
the output. In 2009, the highly influential ASP.NET MVC was released, implementing the
Model-View-Controller pattern, which still lives on.

Explaining ASP.NET Core 9

Patterns
A pattern is a way to solve a common problem in software. For instance, if
you have an application for ordering products in an online store, there is a
common set of objects and actions involved. You have products, orders, and
so on commonly stored in a database. You need methods for working with
these objects – decrease the stock when a customer orders a product, applying
a discount due to the customer having a purchase history. You need something
visible on the web page where the customer can view the store and its products
and perform actions.

This is commonly implemented in what is called the Model-View-Controller
(MVC) pattern.

The products and orders are described as Models. The actions performed, such
as decreasing the number, retrieving pricing info, and so on are implemented
in Controllers. The rendering of output visible to the end user, as well as
accepting input from end users, is implemented in Views. We will see this
demonstrated in code later in this book.

Patterns cover a range of problems and are often generic and independent of
the programming language they are implemented in.

This book will touch upon patterns applicable to ASP.NET Core applications,
but will not cover patterns in general.

Confusingly, there were other web-based initiatives launched separately, for instance,
Silverlight, which ran as a plugin in the browser. The thinking was that since a browser
restricted code to a sandbox, this could act as a bridge to accessing features usually only
available outside a browser. It didn't become a hit, so although you can still make it run it
is considered deprecated.

With Windows 8's app model, you could write apps installable on the device using HTML
for the UI that were not directly compatible with an actual web app. Relying on the
Windows Store for distribution, it was hampered by the fact that not all users upgrade
immediately to new Windows versions, and developers mostly preferred reaching the
largest audience instead.

At the same time as Windows 8 and .NET 4.5 were launched, Microsoft came up with
.NET Standard. This is a set of APIs that are in the Base Class Library for any .NET stack.
This meant that certain pieces of code would work equally well in a desktop Windows
application as a mobile app intended for Windows Phone. This did not prohibit the use of
platform-specific additions on top, but it was easier to achieve a basic level of portability
for your code. This did not mean you achieved write once run everywhere use cases but
was the start of the cross-platform ecosystem we are seeing now.

10 Introduction to ASP.NET Core 5

Microsoft was mainly concerned with growing the Windows ecosystem, but outside the
company, the Mono project worked on creating an open source version of .NET that could
run applications on Linux. The Linux effort did not initially take off, but when the creator,
Miguel de Icaza, started the company Xamarin, focusing on using this work to make .NET
run on iOS and Android devices, it gained traction. Much like the reduced versions of
.NET, it was similar to what you had on the desktop, but not identical.

Outside the .NET sphere, technology has changed over the years. In 2020, you can get
a mobile device more powerful than a 2002 desktop. Apple devices are everywhere in
2020 whereas in 2002 it was still a couple of years before the iPhone and iPad would be
launched. Another significant thing was that in 2002, code written by Microsoft would
primarily be read and updated by their employees. Open source was not a thing coming
out of Redmond.

These trends were tackled in different ways. Microsoft started open sourcing pieces of
.NET back in 2008, though it was not the complete package, and there were complaints
around the chosen license, which some felt was only semi-open source.

Fast forward to 2016 when .Net Core was announced. .NET was on version 4.6.2 at the
time and .NET Core started with 1.0. From that point in time, the original .NET has been
referred to as "Classic" .NET.

The mobile platform issue partly resolved itself by Windows Mobile/Phone failing in the
market. Xamarin was acquired, also in 2016, which meant that mobile meant operating
systems from Google and Apple.

Microsoft had by this time committed fully to open source and even started accepting
outside contributions to .NET. The design of the language is still stewarded by Microsoft,
but the strategy is out in the open and non-Microsoft developers make considerable
contributions.

Microsoft learned from the past and recognized that there would not be a big bang shift
towards using .NET Core instead of .NET Classic. Regardless of whether developers
would agree the new version was better or not, it was simply not possible for everyone to
rewrite their existing code in a short matter of time, especially since there were APIs not
available in the initial version of .NET Core.

Explaining ASP.NET Core 11

The .NET Standard message was re-iterated. You could write code in .NET 4.6 targeting
.NET Standard 1.3 and this would be usable in .NET Core 1.0 as well. The intent was that
this could be used for a migration strategy where you moved code piece by piece into a
project compatible with .NET Standard and left the non-compatible code behind while
writing new code to work with .NET Core.

Unfortunately, it was hard for people to keep track of all the terms – .NET, .NET Classic,
.NET Core, .NET Standard, and all the corresponding version numbers, but it is still a
viable strategy mixing these to this day.

.NET Core was, as stated, introduced with a version number of 1.0. Since then it has
increased the numbers, reaching 3.1. At first glance, this means that it does not sound
logical that the next version would be called .NET Core 5. There are three main reasons
why this numbering was abandoned:

•	 .NET Core 4.x could easily be mixed up with .NET 4.x.

•	 Since there is a .NET 4.x (non-Core), the next major number of this would be 5.

•	 To illustrate how the two paths "merge," they meet up at version 5. To help avoid
confusion, “Core” was dropped from the version name.

.NET Classic has reached the end of its life when it comes to new versions, so going
forward, (after .NET 5), the naming will be .NET 6, .NET 7, and so on with .NET Core as
the foundational framework.

.NET Classic will not be unsupported or deprecated soon, so existing code will continue
to work, but new functionality and investments will not be made.

Supportability strategy
Traditional .NET Classic versions have enjoyed long supportability although not with a
fixed lifetime, instead depending on service pack releases and the operating system it was
released with.

With .NET Core 2.1, Microsoft switched to a model common in the Linux ecosystem with
versions that are dubbed LTS (Long-Term Support) and non-LTS. An LTS release will
have 3 years of support, where non-LTS only has one year. Minor versions are expected to
be released during the support window, but the end date is set when the major version is
released.

12 Introduction to ASP.NET Core 5

Figure 1.3 shows the .NET release timeline, focusing on its supportability schedule.

Figure 1.3 – .NET supportability schedule

Obviously, we can't guarantee a new release will be deployed every year, but that's the
current plan. From .NET Core 3.1, the planned cycle is a new version in November of
every year, and LTS every other year. .NET 5 was released in November 2020 as a non-LTS
release. .NET 6 is targeted as an LTS release in November 2021.

This does not mean that code written in an unsupported version breaks or stops working,
but security patches will not be issued, and libraries will not be maintained for older
runtimes, so plan for upgrades accordingly. (Microsoft has a track record of providing
guidance for how to update code to newer versions.)

It has at times felt like a bumpy ride, but unless you must deal with legacy systems, the
current state of affairs is more concise than it has been in a long time.

This section was mostly a history lesson on how we got to where we are now. In the next
section, we will do a friendly walk-through of a basic web application based on C# code.

Refreshing your C# knowledge
The C# language is extensive enough to have dedicated books, and there are indeed books
that cover everything from having never seen programming before to advanced design
patterns and optimizations. This book is not intended to cover either the very basic things
or esoteric concepts only applicable to senior developers. The target audience being
beginners, we will take a short tour through a Hello World type example to set the
stage and make sure things work on your machine.

Refreshing your C# knowledge 13

If you feel comfortable with how the Visual Studio Web App template works and want to
dive into the new bits, feel free to skip this section.

We will start with the following steps:

1.	 Start Visual Studio and select Create a new project.

2.	 Select ASP.NET Core Web Application and hit Next.

3.	 Name the solution Chapter_01_HelloWeb and select a suitable location for this
book's exercises (such as C:\Code\Book\Chapter_01) and click on Create.

4.	 On the next screen, make sure ASP.NET Core 5 is selected and choose Empty
in the middle section. It is not necessary to check Docker Support or configure
Authentication.

5.	 Once the code is loaded and ready, you should verify your installation is working
by pressing F5 to run the web application in debug mode. It might take a little while
the first time, but hopefully, there are no errors and you are presented with this in
your browser:

Figure 1.4 – Running the default web app template

Nothing fancy, but it means you are good to go for doing more complicated things in later
chapters. If there are problems getting it to run, this is the time to fix it before proceeding.

Let's look at some of the components and code that make this up.

14 Introduction to ASP.NET Core 5

To the right-hand side in Visual Studio, you will see the files in the solution:

Figure 1.5 – The file structure of the web app in Visual Studio 2019

This structure is specific to the empty web application template. You are more likely to
use an MVC or Blazor template to build more advanced stuff, unless you want to write
everything from scratch.

Let's look at the contents of Program.cs:

using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Hosting;

namespace Chapter_01_HelloWeb
{
 public class Program
 {
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args)
=>

Refreshing your C# knowledge 15

 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

We see a Main method, which in this file has the single purpose of starting a process
for handling web requests and processes. You can have different types of host processes
running, so the recommended pattern is that you run a generic host process, and then
further customize it to specify that it is a web hosting process. Since this is the first chapter
of the book, you have not been introduced to other types of hosts yet, but in Chapter 2,
Cross-Platform Setup, we will get into an example for spinning up a different host type.

In this case, we used the Empty web template, but this is boilerplate code that will be
similar in the other web-based templates as well.

There is a reference to Startup in the previous code snippet and this refers to the
contents of Startup.cs:

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

namespace Chapter_01_HelloWeb
{
 public class Startup
 {
 // This method gets called by the runtime. Use this method
 // to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 }

 // This method gets called by the runtime. Use this method
 // to configure the HTTP request pipeline.
 public void Configure(IApplicationBuilder app,
 IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

16 Introduction to ASP.NET Core 5

 app.UseRouting();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 });
 }
 }
}

If you have not written web apps in C# recently, this might be something you are
unfamiliar with. In .NET Classic, the ceremony of setting up the configuration for your
web app was spread across multiple config files, and the syntax could be slightly different
between configuration types. A particularly heinous issue to figure out was when you had
a "hidden" web.config file overriding what you thought was the file that would apply.
It was also very much a one-size-fits-all setup where you would include lines of XML that
were simply not relevant for your application.

In .NET Core, this is centralized to one file with a larger degree of modularity. In more
complex applications, it is possible that you'll need to use additional files, but the starting
template does not require that. The pattern to observe here is that it is in the form app.
UseFeature. For instance, if you add app.UseHttpsRedirection, that means
that if the user types in http://localhost, they will automatically be redirected to
https://localhost. (It is highly recommended to use https for all websites.) While
there is not a lot of logic added in this sample, you should also notice the if statement
checking if the environment is a dev environment. It is possible to create more advanced
per-environment settings, but for a simple thing like deciding whether the detailed
exceptions should be displayed in the browser, this is a useful option for doing so.

It is not apparent from the code itself, but these features that are brought in are called
middlewares.

Middlewares are more powerful than the impression you get from here; this will be
covered in greater detail in later chapters.

The Configure method runs as a sequence loading features dynamically into the startup
for the web hosting process. This means that the order of the statements matters, and
it's easy to mix this up if you're not paying attention. If app.UseB relies on app.UseA
loading first, make sure that's what it looks like in the code as well.

Refreshing your C# knowledge 17

It should be noted that this approach is not specific to web-based apps but will be
applicable to other host-based apps as well.

The lines that generate the visible output here are the following:

app.UseEndpoints(endpoints =>
{
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
});

Let's change this to the following:

app.UseEndpoints(endpoints =>
{
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("<h2>The time is now:</
h2>" +
 DateTime.UtcNow.ToString());
 });
});

This code means that we tell the .NET runtime to wire up an endpoint listening at the root
of the URL and write a response directly to the HTTP conversation. To demonstrate that
we can go further than the original "Hello World!" string, we're outputting HTML as
part of it in addition to using a variable that generates a dynamic value. (Note: the browser
decides whether HTML should be rendered or not in this example, so you might see the
tags without the formatting on your computer.)

If you run the application again, you should see the current time being printed:

Figure 1.6 – Hello World with the current time printed

18 Introduction to ASP.NET Core 5

If you have worked on more frontend-centric tasks, you might notice that while the
previous snippet uses HTML, it seems to be missing something. Usually, you would apply
styling to a web page using Cascading Style Sheets (.css files), but this approach is a
more stripped-down version where we don't touch that. Later chapters will show you
more impressive styling approaches than what we see here.

If you have ever dabbled with anything web before, you have probably learned, either the
hard way or by being told so, that you should not mix code and UI. This example seems to
violate that rule pretty well.

In general, it is indeed not encouraged to implement a web app this way as one of the
basic software engineering principles is to separate concerns. You could, for instance, have
a frontend expert create the user interface with very little knowledge of the things going
on behind the scenes in the code, and a backend developer handling the business logic
only caring about inputs and outputs to the "engine" of the application.

The approach above is not entirely useless though. It is not uncommon for web apps to
have a "health endpoint." This is an endpoint that can be called into by either monitoring
solutions or by container orchestration solutions when you're dealing with microservices.
These are usually only looking for a static response that the web app is alive so we don't
need to build user interfaces and complex logic for this. To implement this, you could add
the following in Startup.cs while still doing a "proper" web app in parallel:

endpoints.MapGet("/health", async context =>
{
 await context.Response.WriteAsync("OK");
});

If you have worked with early versions of Visual Studio (pre 2017), you may have
experienced the annoyance of working with the project and solution file for your code.
If you added or edited files outside Visual Studio and then tried going back for the
compilation and running of the code, it was common to get complaints in the IDE about
something not being right.

This has been resolved and you can now work with files in other applications and other
folders just by saving the resulting file in the correct place in the project's structure.

The project file (.csproj) for a .NET Classic web app starts at 200+ lines of code. For
comparison, the web app we just created contains 7 lines (and that includes 2 whitespace
lines):

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>net5.0</TargetFramework>

Refreshing your C# knowledge 19

 </PropertyGroup>

</Project>

To view this in Visual Studio, you have to right-click the project name and choose Unload
Project before choosing Edit .csproj. When you finish editing the file, you need to reload
the project to work with it again.

At this point, we recommend that you play around with the code, make edits, and see how
it turns out before proceeding.

In this walk-through, we relied on Visual Studio 2019 to provide us with a set of templates
and a graphical user interface to click through. .NET does not force the use of Visual
Studio, so it is possible to replicate this from the command line if you want to work with a
different editor. Run the dotnet new command to see the available options with some
hints to go along with it:

Figure 1.7 – Listing the available templates in .NET

20 Introduction to ASP.NET Core 5

To replicate what we did in Visual Studio, you would type dotnet new web. The
default project name will be the same as the folder you are located in, so make sure you
name your folder and change it accordingly.

This should put you in a place where you have some example code to test out and verify
that things work on your system. There is, however, more to the C# language, and next, we
will take a look at what the newest version of C# brings.

Learning what's new in .NET 5 and C# 9
The general rule of thumb is that new versions of .NET, C#, and Visual Studio are
released in the same time frame. This is certainly the easiest way to handle it as well –
grab the latest Visual Studio and the other two components follow automatically during
installation.

The tooling is not always tightly coupled, so if for some reason you are not able to use the
latest versions, you can look into whether there are ways to make it work with previous
versions of Visual Studio. (This can usually be found in the requirements documentation
from Microsoft.)

A common misconception is that .NET and C# have to be at the same version level and
that upgrading one implies upgrading the other. However, the versions of .NET and C#
are not directly coupled. This is further illustrated by the fact that C# has reached version
9 whereas .NET is at 5. .NET is not tied to using C# as a language either. (In the past,
you had Visual Basic and currently, you also have F#.) If you want to stay at a specific C#
version (without upgrading to the latest version of C#), then after you upgrade .NET, that
combination will usually still work.

Things that are defined by the C# language are usually backward compatible, but patterns
might not be.

As an example, the var keyword was introduced in C# 3. This means that the following
declarations are valid:

var i = 10; // Implicitly typed.
int i = 10; // Explicitly typed.

Both variants are okay, and .NET Core 5 will not force either style.

As an example of .NET moving along, there were changes going from .NET Core 1.x
to .NET Core 2.x where the syntax of C# did not change, but the way .NET expected
authentication to be set up in code meant that your code would fail to work even if the
C# code was entirely valid. Make sure you understand where a certain style is enforced by
.NET and where C# is the culprit.

Refreshing your C# knowledge 21

You can specify which C# version to use by editing the file for the project (.csproj) and
adding the LangVersion attribute:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net5.0</TargetFramework>
 </PropertyGroup>
 <PropertyGroup>
 <LangVersion>9.0</LangVersion>
 </PropertyGroup>
</Project>

It can be hard to keep track of what can be changed and optimized in the code. With the
.NET Compiler Platform released in 2014, nicknamed Roslyn, this improved greatly with
the introduction of real-time analysis of your code. Where you previously had to compile
your code for the IDE to present errors and warnings, these are now displayed as you are
writing your code. It doesn't confine itself to calling out issues preventing your code from
running, but will also suggest improvements to be made.

For instance, consider the following:

Console.WriteLine("Hello " + name);

Roslyn will suggest String interpolation as an option:

Console.WriteLine($"Hello {name}");

Figure 1.8 – Code improvement suggestions

For a trivial example like this, it may not look like much of an improvement, but it often
makes longer strings more readable. Either way, it is a suggestion, not something that is
forced upon you.

22 Introduction to ASP.NET Core 5

This means that when the topic is "what's new," that can be broken into two sections –
.NET and C#. What's new in .NET will mainly be covered in other chapters. What's new
in C# gets a walk-through here and will be used in code samples in subsequent chapters.
Note that not all of the code in the book will use C# 9 syntax everywhere, and as long as
the new syntax is mainly stylistic, you are advised to choose your own style if you are not
part of a larger development team forcing a set of standards.

What's new in .NET 5?
A lot of the improvements are under the hood, making things run more smoothly and
better all round. There are, however, a couple of more noticeable improvements too. This
chapter will only provide a couple of highlights as the details will come later in the book.

Closing the gap with .NET Classic
With .NET Core 1.0, it was impossible for many projects to be ported from .NET 4.x
because there simply were no corresponding libraries for some of the features. .NET
Core 3.1 removed this barrier for most practical purposes and with .NET Core 5, the
framework is considered feature complete on the API and library side.

Some technologies have been deprecated and have thus not been carried over (see the
Removed/changed features section later in this chapter for that):

•	 Unified .NET with Single Base Class Library: Previously, Xamarin apps (mobile
apps) were based on the Mono BCL, but this has now moved into .NET 5 with
improved compatibility as an outcome.

•	 Multi-Platform Native Apps: A single project will be able to target multiple
platforms. If you use a UI element, .NET will handle this appearing as a control
native to the platform.

•	 Cloud Native: Current .NET Code will certainly run in the cloud, but further
steps will be taken towards labeling .NET a cloud-native framework. This includes
a reduced footprint for easier use in containers and single file executables, so you
don't need the .NET runtime to be installed, and aligning the cloud story and the
local developer experience so they are at feature parity.

•	 Blazor WebAssembly: .NET Core 3.1 introduced Blazor apps that were rendered
server-side. With .NET 5, they can also be rendered client-side, enabling offline and
standalone apps.

The goal is that the code is close to identical, so it will be easy to switch from one
hosting model to the other.

Refreshing your C# knowledge 23

•	 Multi-Platform Web Apps: Blazor apps was originally conceived as a vehicle for
web apps and works great in a browser. The goal is that this will work equally great
for a mobile device, or a native desktop application.

•	 Continuous Improvements: Faster algorithms in the BCL, container support in the
runtime, support for HTTP3, and other tweaks.

Having discussed what's new in .NET 5, let's move on to C# 9.

What's new in C# 9?
The overarching goal of C# 9 is simplification. The language is mature enough that you
can do most things you want in some way, so instead of adding more features, it is about
making the features more available. In this section, we will cover new ways to structure
your code and explain some of the new code you can create.

Top-level programs
A good example of simplification is top-level programs. With C# 8, the Visual Studio
template created this code as the starting point for a console app:

using System;

namespace ConsoleApp2
{

 class Program
 {

 static void Main(string[] args)
 {
 Console.WriteLine("Hello World");
 }
 }
}

There is a reason why there are so many lines of code to do so little, but for a beginner, it is
a lot of ceremony to get going. The preceding snippet can now be written like this:

Using System;

Console.WriteLine("Hello World");

This does not support omitting classes and methods in general throughout the
program. This is about simplifying the Main method, which often does little more than
bootstrapping the application, and which you can only have one of in a given application.

24 Introduction to ASP.NET Core 5

Init-only properties
When working with objects, you usually define and create them like this:

static void Main(string[] args)
{
 InfoMessage foo = new InfoMessage
 {
 Id = 1,
 Message = "Hello World"
 };
}

public class InfoMessage
{
 public int Id { get; set; }
 public string Message { get; set; }
}

In this code, the properties are mutable, so if you later want to change the ID, that is okay
(when the accessor is public). To cover the times when you want a public property to be
immutable, a new type of property is introduced with init-only properties:

public class InfoMessage
{
 public int Id { get; init; }
 public string Message { get; init; }
}

This makes the properties immutable so once you have defined them, they cannot change.

Init accessors and read-only fields
Init accessors are only meant to be used during initialization, but this doesn't conflict with
read-only fields and you can use both if you have needs that require a constructor:

public class City
{
 private readonly int ZipCode;
 private readonly string Name;

 public int ZipCode
 {
 get => ZipCode;
 init => ZipCode = (value ?? throw new
 ArgumentNullException(nameof(ZipCode)));
 }

Refreshing your C# knowledge 25

 public string Name
 {
 get => Name;
 init => Name = (value ?? throw new
 ArgumentNullException(nameof(Name)));
 }
}

Records
Init works for individual properties, but if you want to make it apply to all properties in a
class, you can define the class as a record by using the record keyword:

public record class City
{
 public int ZipCode {get; init;}
 public string Name {get; init;}

 public City(int zip, string name) => (ZipCode, Name) =
(zip,name);
}

When you declare the object as a record, this brings you the value of other new features.

With expressions
Since the object has values that cannot be changed, you have to create a new object if the
values do change. You could, for instance, have the following:

City Redmond = new City("98052","Redmond");

//The US runs out of zip codes so every existing code is
// assigned
//a 0 as a suffix
City newRedmond = new City("980520","Redmond");

Using the with expression enables you to copy existing properties and just redefine the
changed values:

var newRedmond = Redmond with {ZipCode = "980520"};

26 Introduction to ASP.NET Core 5

Value-based equality
A trap for new programmers is the concept of equality. Given the following code, what
would the output be?

City Redmond_01 = new City { Name = "Redmond", ZipCode = 98052
};
City Redmond_02 = new City { Name = "Redmond", ZipCode = 98052
};
if (Redmond_01 == Redmond_02)
 Console.WriteLine("Equals!");
else
 Console.WriteLine("Not equals!");

The output would be Not equals because they are not the same object even if the values
are the same. To achieve what we call equal in non-programming parlance, you would
have to override the Equals method and compare the individual properties:

class Program
{
 static void Main(string[] args)
 {
 City Redmond_01 = new City{ Name = "Redmond", ZipCode =
98052 };
 City Redmond_02 = new City{ Name = "Redmond", ZipCode =
98052 };

 if (Redmond_01.Equals(Redmond_02))
 Console.WriteLine("City Equals!");
 else
 Console.WriteLine("City Not equals!");
 }
}

public class City
{
 public int ZipCode{get; set;}
 public string Name{get; set;}

 public override bool Equals(object obj)
 {
 //Check for null and compare run-time types.
 if ((obj == null) || !this.GetType().Equals(obj.GetType()))
 {
 return false;
 }
 else

Refreshing your C# knowledge 27

 {
 City c = (City)obj;
 return (ZipCode == c.ZipCode) && (Name == c.Name);
 }
 }
 …
}

This would render the output that the two cities are equal.

In Records, this behavior is implied by default and you do not have to write your own
Equals method to achieve a value-based comparison. Having
if (Redmond_01.Equals(Redmond_02)) in the code should work as the previous
snippet without the extra public override bool Equals(object obj) part.

You can still override Equals if you have a need for it, but for cases where you want a
basic equality check, it's easier to use the built-in functionality.

Data members
With records, you often want the properties to be public, and the intent is that init-only
value-setting will be preferred. This is taken as an assumption by C# 9 as well, so you can
simplify things further.

Consider the following code:

public data class City
{
 public int ZipCode {get; init;}
 public string Name {get; init;}
}

It can be written like this:

public data class City {int ZipCode; string Name;}

You can still make the data members private by adding the modifier explicitly.

Positional records
The following line of code sets the properties explicitly:

City Redmond = new City{ Name = "Redmond", ZipCode = 98052 };

28 Introduction to ASP.NET Core 5

Having knowledge of the order the properties are defined in, you can simplify it to the
following:

City Redmond = new City(98052, "Redmond");

There are still valid use cases for having extra code to make it clearer what the intent of the
code is so use with caution.

Inheritance and records
Inheritance can be tricky when doing equality checks, so C# has a bit of magic happening
in the background. Let's add a new class:

public data class City {int ZipCode; string Name;}
public data class CityState : City {string State;}

Due to a hidden virtual method handling the cloning of objects, the following would be
valid code:

City Redmond_01 = new CityState{Name = "Redmond", ZipCode =
98052, State = "Washington" };
City Redmond_02 = Redmond_01 with {State = "WA"};

What if you want to compare the two objects for value-based equality?

City Redmond_01 = new City { Name = "Redmond", ZipCode = 98052
};
City Redmond_02 = new CityState { Name = "Redmond", ZipCode =
98052, State = "WA" };

Are these equal? Redmond_02 has all the properties of Redmond_01, but Redmond_01
lacks a property, so it would depend on the perspective you take.

There is a virtual protected property called EqualityContract that is overridden
in derived records. To be equal, two objects must have the same EqualityContract
property.

Refreshing your C# knowledge 29

Improved target typing
The term target typing is used when it is possible to get the type of an expression from the
context it is used in.

For instance, you can use the var keyword when the compiler has enough info to infer
the right type:

var foo = 1 //Same as int foo = 1
var bar = "1" //Same as string bar = "1"

Target-typed new expressions
When instantiating new objects with new, you had to specify the type. You can now leave
this out if it is clear (to the compiler) which type is being assigned to:

//Old
City Redmond = new City(98052,"Redmond");

//New
City Redmond = new (98052, "Redmond");

//Not valid
var Redmond = new (98052,"Redmond");

Parameter null-checking
It is a common pattern for a method to check if a parameter has a null value if that will
cause an error. You can either check if the value is null before performing an operation, or
you can throw an error. With null-checking, you make this part of the method signature:

//Old – nothing happens if name is null
void Greeter(string name)
{

 if (name != null)
 Console.WriteLine($"Hello {name}");
}

//Old – exception thrown if name is null
void Greeter(string name)
{

 if (name is null)
 throw new ArgumentNullException(nameof(name));
 else
 Console.WriteLine($"Hello {name}");
}

//New

30 Introduction to ASP.NET Core 5

void Greeter(string name!)
{
 Console.WriteLine($"Hello {name}");
}

For methods accepting multiple parameters, this should be a welcome improvement.

Pattern matching
C# 7 introduced a feature called pattern matching. This feature is used to get around the
fact that you do not necessarily control all the data structures you use internally in your
own code. You could be bringing in external libraries that don't adhere to your object
hierarchy and re-arranging your hierarchy to align with this would just bring in other
issues.

To achieve this, you use a switch expression, which is similar to a switch statement,
but the switch is done based on type pattern instead of value.

C# 9 brings improvements to this with more patterns you can use for matching.

Removed/changed features
It is always interesting to start trying out new features, but there are also features and
technologies that have been removed from .NET.

It is common to do house cleaning when bringing out new major versions, and
there are many minor changes. Microsoft maintains a list of breaking changes
(in .NET 5) at https://docs.microsoft.com/en-us/dotnet/core/
compatibility/3.1-5.0.

As stated previously in this chapter, .NET Core 1.0 was not feature complete compared to
.NET Classic. NET Core 2 added a lot of APIs, and .NET Core 3 added more of the .NET
Frameworks. The transition is now completed, so if you rely on a feature of .NET Classic
that is not found in .NET 5, it will not be added later.

Windows Communication Framework
Web services have been around for many years now, and one of the early .NET
frameworks for this was Windows Communication Framework (WCF). WCF could be
challenging to work with at times but provided contracts for data exchange and a handy
code generation utility in Visual Studio. This was deprecated in .NET Core 3, so if you
have any of these services that you want to keep, they cannot be ported to .NET 5. This
applies both to the server and client side.

https://docs.microsoft.com/en-us/dotnet/core/compatibility/3.1-5.0
https://docs.microsoft.com/en-us/dotnet/core/compatibility/3.1-5.0

Understanding websites and web servers 31

It is possible to create a client implementation manually in .NET Core, but it is not
trivial and is not recommended. The recommended alternative is moving to a different
framework called gRPC. This is an open source remote procedure call (RPC) system.
gRPC was developed by Google with support for more modern protocols, such as
HTTP/2 for the transport layer, as well as contracts through a format called ProtoBuf.

Web Forms
Windows Forms was the framework for creating "classic" Windows desktop apps (Classic
being the pre-Windows 8 design language). This was ported over with .NET Core 3.0.

The web version of this was called Web Forms. That is, technically, there were differences
in the code, but the model, with a so-called "code-behind" approach, was similar between
the two. It was recommended to move to MVC and Razor style syntax in newer versions
of .NET Classic as well, but Web Forms was still supported. This has not been brought
over to .NET Core, and you need to look into either MVC or Blazor as alternatives.

Having covered both what's new and what's no more, we will now look more closely at the
components that present your web apps to the world at large.

Understanding websites and web servers
Web servers are an important part of ASP.NET apps since they, by definition, require
one to be present to run. It is also the major contributor to the "it works on my machine"
challenge for web apps (where it works on your machine, but it doesn’t work for your
customers).

The history of .NET has been closely linked to the web server being Internet Information
Services (IIS). IIS was released several years before .NET, but support for .NET was added
in a later version. For a web application to work, there are external parts that need to be
in place that are not handled by the code the developer writes. This includes the mapping
of a domain name, certificates for encrypting data in traffic, and a range of other things.
IIS handles all of these things and more. Unfortunately, this also means that creating an
optimal configuration might require more knowledge of server and networking topics
than the average .NET developer would have.

IIS is designed to run on a server operating system, and since Visual Studio can be
installed on Windows Server, it is entirely possible to set up a production-grade
development environment. Microsoft also ships a reduced version called IIS Express as
part of Visual Studio that enables you to test ASP.NET apps without installing a server
operating system.

32 Introduction to ASP.NET Core 5

IIS Express can do most of the things the developer needs to test ASP.NET apps, with the
most important difference being that it is designed for handling local traffic only. If you
need to test your web app from a different device than the one you are developing on, IIS
Express is not designed to enable that for you.

We will present a couple of configuration components you should be aware of as well as
utilities and methods for troubleshooting web-based applications.

Web server configuration
While this book targets developers, there are some things regarding web servers that
are valuable to understand in case you need to have a conversation with the people
responsible for your infrastructure.

When developing web apps, it is necessary to be able to read the traffic, and it is common
that one of the things one does to make this easier is running the app over plain HTTP,
allowing you to inspect traffic "over the wire." You should never run this in production.
You should acquire TLS/SSL certificates and enable HTTPS for production, and ideally
set up your local development environment to also use HTTPS to make the two
environments comparable. Visual Studio enables the automatic generation of a trusted
certificate that you need to approve once for the initial setup so this should be fairly easy
to configure.

Certificate trust
Certificates are issued from a Public Key Infrastructure (PKI) that is built in a
hierarchical manner, typically with a minimum of three tiers. For a certificate to be valid,
the client device needs to be able to validate this chain. This is done on multiple levels:

•	 Is the root Certificate Authority (CA) trusted? This must be installed on the device.
Typically, this is part of the operating system with common CAs pre-provisioned.

•	 Is the certificate issued to the domain you host your site on? If you have a certificate
for northwind.com, this will not work if your site runs at contoso.com.

•	 Certificates expire so if your certificate expires in 2020, it will fail to validate in 2021.

There is no easy way for you as a developer to make sure that users accessing your site
have the clock configured correctly on their device, but at least make sure the server is set
up as it should be.

http://contoso.com

Understanding websites and web servers 33

Session stickiness
Web apps can be stateful or stateless. If they are stateful, it means there is a sort of dialogue
going on between the client and the server, where the next piece of communication
depends on a previous request or response. If they are stateless, the server will answer
every request like it is the first time the two parties are communicating. (You can embed
IDs in the request to maintain state across stateless sessions.)

In general, you should strive to make sessions stateless, but sometimes you cannot avoid
this. Say you have the following record class:

public data class City {int ZipCode; string Name;}

You have also taken the time to create a list of the top 10 (by population) cities in every
state and expose this through an API. The API supports looking up the individual zip
code or name, but it also has a method for retrieving all records. This is not a large dataset,
but you do some calculations and figure out that you should only send 100 records at a
time to not go over any limits for HTTP packet size limitations.

There are multiple ways to solve this. You could write in the docs that the client should
append a start and end record (with the end assumed to be start +99 if omitted):

https://contoso.com/Cities?start=x&end=y

You could also make it more advanced by calculating a nextCollectionId parameter
that is returned to the client, so they could loop through multiple calls without
recalculating start and end:

https://contoso.com/Cities?nextCollectionId=x

There is however a potential issue here occurring on the server level you need to be aware
of.

Since your API is popular, you need to add a second web server to handle the load and
provide redundancy. (This is often called a web farm and can scale to a large number of
servers if you need to.) To distribute the traffic between the two, you put a load balancer
in front of them. What happens if the load balancer directs the first request to the first web
server and the second request to the second server?

34 Introduction to ASP.NET Core 5

If you don't have any logic to make the nextCollectionId available to both servers,
it will probably fail. For a complex API serving millions of requests, you should probably
invest time in implementing a solution that will let the web servers access a common
cache. For simple apps, what you are looking for might be session stickiness. This is a
common setting on load balancers that will make a specific client's requests stick to
a specific web server instance, and it is also common that you need to ask the person
responsible for the infrastructure to enable it. That way, the second request will go to the
same web server as the first request and things will work as expected.

Troubleshooting communication with web servers
You will eventually run into scenarios where you ask yourself why things are not
working and what actually goes on with the traffic. There are also use cases where
you are implementing the server and need a quick way to test the client side without
implementing a client app. A useful tool in this regard is Fiddler from Telerik, which you
can find at https://www.telerik.com/fiddler.

This will most likely be useful in subsequent chapters, so you should go ahead and install
it now. By default, it will only capture HTTP traffic, so you need to go to Tools | Options
| HTTPS and enable the checkmark for Capture HTTPS CONNECTs and Decrypt
HTTPS traffic as shown:

Figure 1.9 – Fiddler HTTPS capture settings

https://www.telerik.com/fiddler

Understanding websites and web servers 35

A certificate will be generated that you need to accept installing and then you should be
able to listen in on encrypted communication as well.

This method is technically what is known as a man-in-the-middle attack, which can also
be used with malicious intent. For use during your own development, this is not an issue,
but for production troubleshooting, you should use other mechanisms to capture the info
you need. The web application will be able to intercept the valid traffic it receives (that
it has the certificate for decoding), but with a tool capturing at the network level, you'll
potentially collect extra info you should not have.

Fiddler can also be used for crafting HTTP requests manually, so it is a useful utility even
if you're not chasing down bugs:

Figure 1.10 – Fiddler HTTP request constructor

If it is an error you are able to reproduce yourself by clicking through the website, Visual
Studio is your friend. You have the Output window, which will provide process-level
information:

Figure 1.11 – Visual Studio output window

36 Introduction to ASP.NET Core 5

Troubleshooting is often complicated and rarely fun but looking directly at the protocol
level is a useful skill to have when dealing with web applications, and these tools should
help you along the way to resolving your issues.

Choosing a web server option
As noted, IIS Express is included by default in Visual Studio 2019, and if the code you are
developing is intended to run on a windows server with the full version of IIS, it is a good
choice. However, there are some drawbacks to IIS Express as well:

•	 While requiring less overhead than the full IIS, it is "heavy," and if you find yourself
running debugging cycles where you constantly start and stop the web server, it can
be a slow process.

•	 IIS Express is a Windows-only thing. If your code runs on Linux (which is a real
scenario with the cross-platform support in .NET Core), it is not available as an
option.

•	 If you are writing code for containers/microservices, the full IIS adds up to a lot
of overhead when you have multiple instances each running their own web server.
(With microservices, you usually don't co-locate multiple websites on a web server,
which is what IIS is designed for.)

To support more scenarios, .NET Core includes a slimmed-down and optimized web
server called Kestrel. Going back to the Hello World web app we created earlier in
the chapter, you can open a command line to the root folder and execute the command
dotnet run:

Figure 1.12 – Output of dotnet run

If you open the browser to https://localhost:5001, it should be the same as
launching IIS Express from Visual Studio.

Understanding websites and web servers 37

You don't have to step into the command line to use Kestrel. You can have multiple
profiles defined in Visual Studio – both are added by default. By installing a Visual Studio
extension called .NET Core Debugging with WSL2, you can also deploy directly to a
Linux installation. (Linux configuration will be covered in Chapter 2, Cross-Platform
Setup.) You can edit the settings manually by opening launchSettings.json:

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:65476",
 "sslPort": 44372
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "Chapter_01_HelloWorld": {
 "commandName": "Project",
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5001;
 http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "WSL 2": {
 "commandName": "WSL2",
 "launchBrowser": true,
 "launchUrl": "https://localhost:5001",
 "environmentVariables": {
 "ASPNETCORE_URLS":
 "https://localhost:5001;http://localhost:5000",
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

38 Introduction to ASP.NET Core 5

This file is only used for development purposes on your machine and is not the
configuration used for production.

For production use, Kestrel and IIS are the main options. Which one to use depends
on where and what you are deploying to. For on-premises scenarios where you have
Windows servers, it is still a viable option to deploy to IIS. It comes with useful features
out of the box – if you, for instance, want to restrict the app to users that have logged in
to Active Directory, you can enable this in IIS without modifying your code. (For fine-
grained access control, you will probably want some mechanisms in the code as well.)

If you deploy to containers, Kestrel is an easier path. However, you should not deploy to
Kestrel without an ecosystem surrounding it. Kestrel "lives with the code" – there is no
administration interface that you can configure when the code is not running. This means
that activities such as managing certificates are not covered out of the box. If you deploy
to a cloud environment, that usually means you will bring in other components to cover
what Kestrel itself does not. Certificate handling is provided either by the container host
or a separate service you place in front of the web server.

Exploring Visual Studio Code
Development in .NET has always been associated with Visual Studio, and the pattern has
been that with new versions of Visual Studio comes new versions of .NET. Visual Studio is
still a good companion to developers since it has been optimized over the years to provide
you with everything needed, from writing code, improving upon it, and getting it into a
production environment.

As a pure text editor, it doesn't shine equally strongly. In 2015, Microsoft decided to
make this better by releasing Visual Studio Code. VS Code provides syntax highlighting,
the side-by-side comparison of files, and other features a good editor should have. An
integrated terminal is provided, so if you are writing a script, you do not need to switch
applications to execute it. In addition, it supports extensions that enable you or other
developers to extend the built-in functionality. For instance, you have probably opened
a JSON file only to find it slightly off with line breaks and indentation – there is an
extension called Prettify JSON that fixes that.

VS Code is not limited to editing various text-based files. It has built-in Git support, it can
be configured with a debugger and connected to utilities for building your code, and a lot
more. It's not limited to the .NET ecosystem either – it can be used for programming in
JavaScript, Go, and a range of other languages. In fact, it is, at the time of writing, the most
popular development tool on Stack Overflow across languages and platforms.

Exploring Visual Studio Code 39

Navigating through VS Code is mostly done on the left-hand side of windows:

Figure 1.13 – Visual Studio Code navigation menu

As you install extensions, more icons may appear in the list. (Not all extensions have an
icon.)

In the lower-left corner, you will also find the option to add accounts (for instance, an
Azure account if you are using extensions leveraging Azure). See Figure 1.14, for the
Visual Studio accounts icon.

Figure 1.14 – Visual Studio accounts

In the mid to right lower pane, you can enable some console windows:

Figure 1.15 – Visual Studio output tabs

40 Introduction to ASP.NET Core 5

Note that you may have to enable these through the menu (View | OUTPUT/DEBUG
CONSOLE/TERMINAL/PROBLEMS) the first time. These give you easy access to the
running output of the application, a terminal for running command-line operations, and
so on. The relevance of these depends on what type of files you are editing – for something
like a JSON file, the DEBUG CONSOLE tab will not bring any features.

For the context of this book, you will want to install the C# extension:

Figure 1.16 – C# extension for Visual Studio Code

This is an extension provided by Microsoft that enables VS Code to understand both C#
code and related artifacts such as .NET project files.

If you work with Git repositories, you should also check out the third-party extension
called GitLens, which has features useful for tracking changes in your code.

Leveraging Windows Terminal
In the MS-DOS days of computing, everything revolved around the command line, and
to this day, most advanced users have to open up a cmd window every now and then. The
problem is that it has not always been a great experience so far in Windows. During Build
2020, Microsoft released their 1.0 version of Windows Terminal. While you can do most
of your programming entirely without this, we recommended that you install it, because
there are many advantages that we'll show you later in this book.

Leveraging Windows Terminal 41

Windows Terminal supports multiple tabs, and not only the "classic" cmd, but also
PowerShell, Azure Cloud Shell, and Windows Subsystem for Linux (WSL):

Figure 1.17 – Windows Terminal

Azure Cloud Shell delivers an instance of the command-line interface for Azure, the
Azure CLI, hosted in Azure. This means that instead of installing the Azure CLI locally
and keeping it up to date, you will always have the latest version ready to go. You need
an Azure subscription for this to work, but it has no cost other than a few cents for the
storage that acts as the local disk for the container containing the executables.

WSL will be covered in greater detail in the next chapter, but the short version of this is
that it gives you Linux in Windows. This is the Linux Shell (not a graphical UI), so this
also fits into the Windows Terminal experience.

Regardless of which of these types of Terminal you run, they have many options you can
configure, which makes them extra helpful for programmers. You can choose fonts that
are more suited for programming than Word documents. You can install so-called glyphs,
and, for instance, display directly on the prompt information about which Git branch
you are on. This book will not require you to be using Git as that is aimed at managing
and keeping track of your code, but it is easy to get started with even without knowing
the commands in detail, so it comes highly recommended to experiment with it. In
most development environments these days, it is the de facto source code management
technology. Microsoft provides support for Git both in Azure DevOps and GitHub, but
there are other providers out there as well and it is not specific to Microsoft development
or .NET.

The end result might look like the following:

Figure 1.18 – Windows Terminal with Git support enabled

42 Introduction to ASP.NET Core 5

It is downloadable from the Windows Store as well as directly from GitHub, but the Store
is better if you want automatic updates.

The extended Git info requires a few extra steps, which you can find at https://docs.
microsoft.com/en-us/windows/terminal/tutorials/powerline-setup.

Summary
We started with a history lesson to enable you to understand where .NET Core came
from, enabling you to share context with seasoned .NET developers, and have a common
understanding of the .NET landscape. It has been a long ride, with the occasional
sidetrack and the odd confusing naming here and there. The closing of this part showed
how things have been simplified, and how Microsoft is still working to make the .NET
story more comprehensible for developers – juniors and seniors alike.

We also went through a basic web app to refresh your C# skills. The focus was mainly on
showing the different components that make up an MVC-patterned web app and did not
go extensively into generic programming skills. If you struggled with this part, you might
want to go through a tutorial on the C# language before returning to this book.

We introduced a range of new things while learning what's new in the .NET Core
framework and version 9 of C#. This was a high-level view and introduced the features
that will be covered in greater detail in later chapters.

Since this book is about creating web applications, we covered some web server-specific
details to give background that will be useful both later in the book and in real life.

The chapter was wrapped up by showing off some tools and utilities that are
recommended for your programming tool belt. Remember, the more tools in your belt,
the more opportunities you’ll have in your career!

In the next chapter, we will cover the cross-platform story for .NET 5. This includes
getting started with .NET both on Linux and macOS as well as explaining some of the
concepts around cross-platform support.

Questions
1.	 Why was .NET Core introduced?

2.	 What is the supportability strategy for .NET Core?

3.	 Can you explain the MVC pattern?

https://docs.microsoft.com/en-us/windows/terminal/tutorials/powerline-setup
https://docs.microsoft.com/en-us/windows/terminal/tutorials/powerline-setup

Further reading 43

4.	 What are init-only properties?

5.	 Can you consume WCF services in .NET 5?

Further reading
•	 Hands-On Design Patterns with C# and .NET Core by Gaurav Aroraa and Jeffrey

Chilberto, from Packt Publishing, available at https://www.packtpub.com/
application-development/hands-design-patterns-c-and-net-
core

•	 Programming in C#: Exam 70-483 (MCSD) Guide by Simaranjit Singh Bhalla,
Srinivas Madhav Gorthi, from Packt Publishing, available at https://www.
packtpub.com/application-development/programming-c-exam-
70-483-mcsd-guide

https://www.packtpub.com/application-development/hands-design-patterns-c-and-net-core
https://www.packtpub.com/application-development/hands-design-patterns-c-and-net-core
https://www.packtpub.com/application-development/hands-design-patterns-c-and-net-core
https://www.packtpub.com/application-development/programming-c-exam-70-483-mcsd-guide
https://www.packtpub.com/application-development/programming-c-exam-70-483-mcsd-guide
https://www.packtpub.com/application-development/programming-c-exam-70-483-mcsd-guide

2
Cross-Platform

Setup
One of the major improvements Microsoft talked about when launching .NET Core
was the possibility of running .NET code on platforms other than Windows. With each
iteration, the cross-platform story has been improved upon, and in addition to making
sure the code can run on other operating systems, great improvements have been made
in enabling Linux to run on Windows as well. In the context of running web applications,
Linux is a great host operating system for doing so, and in this chapter, we will go through
how you can get started with .NET across platforms. You will learn how to leverage the
.NET framework and how to get set up and started on a Windows computer, as well as
on Linux and macOS. We'll also see how to troubleshoot various Linux on Windows
scenarios, including Windows Subsystem for Linux version 2 (WSL2). By the end of the
chapter, you'll have your system ready for cross-platform development.

We will cover the following topics:

•	 Leveraging the .NET framework

•	 Getting started on Windows, Linux, and macOS

•	 Debugging Linux on Windows with Visual Studio 2019

46 Cross-Platform Setup

Technical requirements
This chapter is about running code on different operating systems, so if you want to test all
the options, you will need several devices:

•	 The code for Windows and Linux will work on a Windows computer.

•	 The code for macOS requires a Mac system.

•	 The code for Windows can run on a Mac if you use Fusion/Parallels or Bootcamp.

In addition to the devices, you will also need the following:

•	 Visual Studio Code, which is available for Windows, Linux, and macOS

•	 Visual Studio 2019, which is available for Windows and macOS

Please visit the following link to check the CiA videos: https://bit.
ly/3qDiqYY

Check out the source code for this chapter at: https://github.com/PacktPub-
lishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2002

Leveraging the .NET framework
Starting with a bit of trivia, there was a time when Microsoft played very well with other
operating systems. When Windows 3.0 was developed, Microsoft collaborated with
IBM in developing an operating system called OS/2. Windows ran on top of MS-DOS,
so it was not technically an operating system like it is today. In contrast, OS/2 was a
complete operating system, without requiring you to go through DOS first. The nifty thing
about OS/2 was that it included binaries from Windows, so it was able to run Windows
applications on a non-MS operating system. Not only that, but since OS/2 had a different
model of operating and more advanced (at the time) memory management, it was able to
run Windows apps better than Windows itself. Instead of the entire computer locking up
when an application crashed, you just terminated the app before you continued what you
were doing.

The partnership was not without its problems, both culturally and technologically. The
two companies had their differences, so it did not last. Microsoft moved on to build the
Windows NT platform for the professional market and Windows 95 for the consumer
market, and OS/2 died out on its own. From that point in time, Microsoft was not a name
you used in the same sentence as the term cross-platform, and every bit of effort went into
building the Windows ecosystem.

https://bit.ly/3qDiqYY
https://bit.ly/3qDiqYY
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2002
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2002

Leveraging the .NET framework 47

.NET was not present from the beginning of Windows, and it had its own growing pains
over the years, which we covered in the previous chapter.

Fast forward to modern times, and Microsoft will be more than happy to tell you how
great Linux runs on their cloud computing platform and will provide you with everything
you need in order to make .NET code run on the Linux operating system. It took 20 years
to turn the ship around, but it certainly is a different path being taken these days. Let's first
see why we should go cross-platform and when we shouldn't go cross-platform.

Why cross-platform?
When we use the term cross-platform, we may actually be referring to different things.

You have the .NET 5 SDK that you need to develop .NET applications. The fact that this
works on macOS means that developers do not need a Windows computer to develop
software for Windows, and since Macbooks are popular in the tech community, this
broadens the potential developer audience for .NET.

You also have the .NET runtime that is required for running .NET applications. The
fact that this works on Linux means that you are not forced to run your applications on
Windows, and for servers this is a big thing. With a classic Windows Server with a UI
running Internet Information Services, the operating system alone takes up multiple
gigabytes of space. A trimmed down Linux installation, with a command line, could be as
little as 50 megabytes. If you want to run cloud-native apps, this is a major win.

Why not cross-platform?
OS/2 was an interesting experiment, but even if the partnership had remained amiable,
it would probably have been complicated in the long run to enable this type of cross-
platform solution. We explained in the first chapter how there are differences between
managed and native code, and the approach IBM used was basically bringing in Windows
to provide native capabilities. .NET was not invented at the time, and other frameworks
also did not necessarily have great cross-platform features. Over time, this would not be
a sustainable approach. Imagine keeping up with patches—a security flaw in Windows
would require IBM to update their operating system and maintain compatibility through
extensive testing and validation.

The short version of this explanation: if you rely on native/unmanaged code,
cross-platform can be painful.

48 Cross-Platform Setup

Native and unmanaged code is still required for some applications, and then
cross-platform might not be the best option for those situations. For instance, in the early
days of iPhones, there was no flashlight app, but some clever people figured out that they
could interact with the camera and use the flash as a flashlight. This was before Xamarin
was a viable option, but it is likely this would have been outside the scope of .NET
managed code to implement it.

If you want to squeeze every last CPU cycle out of the device the code runs on, then
collected memory objects (that are garbage) might throw you off, because you cannot
reliably predict them. If you can handle the overhead of managing memory yourself, you
may want to go with a lower-level language for full optimization. A traditional example of
this is games where early 3D titles had critical sections written in assembly code, as well
as algorithmic tweaks to math operations that you simply cannot control when using
a library. On the flip side, this didn't just affect cross-platform; the developer also had
to account for which generation of CPU your machine ran, for certain instructions in
the code.

Combining cross-platform and single-platform code
You might think that it sounds hard to write an entire game if you had to keep track of the
actual hardware and not rely on libraries. That is correct. It was hard, and most developers
used a combination of languages to create their games, since less critical parts certainly
could be implemented in more developer-friendly languages.

This leads to the question of whether this can be done with .NET as well. The answer
is that yes, it is possible through a feature called Platform Invocation Services, or P/
Invoke for short. This is a mechanism for escaping the managed .NET runtime. You call
into APIs and services that are exposed through interfaces that are native to the platform,
or components implemented in languages other than the .NET family. For instance, you
could call into a driver written for a specific piece of hardware that's not supported by
.NET.

While Microsoft can make sure the .NET runtime works across platforms, it isn't possible
to guarantee this when you step outside the .NET ecosystem. So, you might have a .NET
application that's a mix between a cross-platform and single-platform. It is possible to
develop strategies for handling this, but this level of cross-platform implementation is
outside the scope of this book. We will, however, explore a similar concept in the coverage
of Blazor, where you can perform a so-called JavaScript interop to step outside what .NET
provides.

Leveraging the .NET framework 49

.NET cross-platform availability
So, when we say cross-platform, do we mean every platform out there? No, not really, but
there are quite a range of options:

•	 Windows x86/x64/ARM: ARM is not widely available from OEMS, but Microsoft
has the Surface Pro X device that runs Windows on ARM. Note that not all the
regular Windows apps are available on this platform, so even though there are
emulation options, your mileage may vary.

•	 macOS

•	 Linux

•	 iOS (through Xamarin)

•	 Android (through Xamarin)

Note that while macOS is suitable for developing .NET web applications, it is not really
an option for running the apps for other environments, even though there is technically
nothing stopping you. Web applications are, by nature, implied to have a server that runs
the backend code. Apple does not provide hardware for server use cases—their devices are
designed to be clients.

ARM-based macs
Apple has announced that they will transition to using CPUs that they designed, instead
of CPUs from Intel. This architecture is not compatible with the current build of .NET for
macOS. .NET does not require Intel CPUs or a specific CPU architecture (as evidenced by
Windows for the ARM architecture), but the runtimes would still need to be updated.

At the time of writing this book, it is not known what Apple is planning for future devices,
and it is not known what steps Microsoft will take to ensure that .NET runs on these
devices. For the purposes of this book, we have used Intel-based Mac devices, and we
cannot speculate as to what will happen in the future at this time.

What cross-platform does not do for you
The fact that .NET supports cross-platform does not mean you have to implement an
application that will work on all the operating systems. If you want to use Windows to
develop an application that will only work on Linux, that is OK. However, you should be
aware that cross-platform support does not guarantee that all the code you write will work
across all the platforms.

50 Cross-Platform Setup

For instance, if your application saves text to the filesystem, you might attempt to write
a text file to c:\WebApp\HelloWorld.txt. This type of reference to a file is a
Windows operating system artifact. There will be no warning when writing this code
and .NET will not prevent its compilation either. As long as the app runs on Windows,
everything should be good.

If the app is running on Linux, however, you will get a runtime exception, because Linux
does not understand that type of filesystem. Linux would want you to reference the
file as /mnt/c/webapp/HelloWorld.txt. (Different distributions have different
conventions for the actual file hierarchy.) If you have good exception handling, the app
might get around this gracefully, but if not, it will simply stop running and leave you with
a bad cross-platform experience.

We will revisit how these challenges can be tackled later in this chapter, after we have
covered the basics of getting things running on multi-platform.

Getting started on Windows, Linux, and
macOS
The first step toward the cross-platform journey is to get the basics working across the
platforms we've mentioned—Windows, Linux, and macOS. We will walk through this in
the following sections, to make sure you are on track with this part of the multiplatform
story.

Windows
We touched upon getting started with .NET 5 on Windows in the previous chapter, so
you should already have a functioning setup for this platform if you followed that guide.
Hence, we will not repeat those instructions here.

Linux
Linux is a popular operating system for server workloads, and it powers a large number
of the virtual machines that run in Azure. It is not as popular as Windows for the average
end user on their desktop, but for a developer, there are a number of benefits to using
Linux.

When developing microservices that run in containers, Linux is a good choice since, in
many cases, you will be able to run trimmed-down images. Containers is not a topic for
this chapter—you can look forward to Chapter 8, Containers, for that, but Linux is a part
of the cross-platform story for .NET, even without containers.

Getting started on Windows, Linux, and macOS 51

You can install Linux directly on your computer, and you can install everything you
need for .NET development, but here we will show you how to develop on Linux, using
Windows, through Windows Subsystem for Linux.

Windows Subsystem for Linux (WSL)
Linux is great for development, because many of the tools needed for a programmer are
part of the operating system. However, for general office use that involves applications,
such as Outlook and Word, Windows is generally a better choice for most people. The
natural follow-up to this is that it would be great if you could have both Linux and
Windows at the same time.

Windows has supported virtualization in different forms for a long time, and because
Linux runs on the same hardware as Windows (as well as being available for free in many
cases), it has been a common option to run a virtual machine with Linux, if you need
it. However, the point of virtual machines is having something separate from the host
machine. Thus, even minor things, such as getting files into and out of the Linux virtual
machine, has been a less than smooth experience.

In 2016, Microsoft brought the Linux operating system closer to being a part of Windows
by introducing Windows Subsystem for Linux (WSL), where you could install special
builds of selected distributions into Windows 10. This was further improved with WSL2,
which was introduced with Windows 10 2004, where Linux can be made an integrated
part of Windows. (The current release of Windows 10 is named 20204 to signify that the
release was first released in the year 2020 and the fourth month, April.)

Let's install WSL2 before we proceed with running code on Linux.

Note that this is the install procedure as of the May 2020 version of Windows 10. Things
may change in future versions.

Your computer will need to be capable of running Hyper-V and Windows 10 2004
(or later). Most modern computers will be able to run Hyper-V, but if your developer
machine is virtualized, then there may be issues enabling WSL2.

To install WSL2, perform the following steps:

1.	 Open Command Prompt as an admin.

2.	 Run the following command to install WSL:

dism.exe /online /enable-feature /featurename:Microsoft-
Windows-Subsystem-Linux /all /norestart

52 Cross-Platform Setup

3.	 Enable Virtual Machine Platform by using the following command:

dism.exe /online /enable-feature /
featurename:VirtualMachinePlatform /all /norestart

4.	 Reboot your computer.

5.	 Download the latest WSL2 kernel from https://wslstorestorage.blob.
core.windows.net/wslblob/wsl_update_x64.msi.

6.	 Run the installer, as shown in Figure 2.1:

Figure 2.1 – WSL2 kernel installer

7.	 Make WSL2 your default version by using the following command:

wsl –-set-default-version 2

8.	 Download a Linux distribution from the Microsoft Store. For this book, we have
used Ubuntu 20.04 LTS (see Figure 2.2):

https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi
https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi

Getting started on Windows, Linux, and macOS 53

Figure 2.2 – Ubuntu 20.04 LTS in the Microsoft Store

9.	 Click Launch to start Linux for the first time:

Figure 2.3 – Setting the username and password for Linux

10.	 Define a username and password for your Linux installation (see Figure 2.3). (This
is not related to your Windows credentials and can be something different.) You
should now find yourself in a regular Linux shell.

54 Cross-Platform Setup

11.	 Since this operating system lives its own life, it is suggested to start by updating to
the latest patches by running sudo apt update && sudo apt upgrade, as
shown in Figure 2.4:

Figure 2.4 – Updating your Linux distribution

12.	 Press Y to continue, and you should be good to go.

Windows should also have automatically configured integration with your non-Linux
hard drive partition. So, if you open Windows Explorer, you should find Tux (the Linux
mascot) there:

Figure 2.5 – Linux integration in Windows Explorer

You can also browse the Linux filesystem from Windows and copy files to and from your
Linux partition (see Figure 2.6):

Getting started on Windows, Linux, and macOS 55

Figure 2.6 – Linux filesystem in Windows Explorer

Note that, under the hood, the Linux filesystem is treated differently to the Windows
filesystem, so only place files that you intend to run inside Linux in these folders, and vice
versa. If you have applications that run inside Linux, these should not be placed in the
Windows partition. It will not cause corruption to do so, but the performance might be
degraded.

The Ubuntu installer automatically started up a command line, but if you followed the
instructions in the previous chapter for setting up Windows Terminal, Ubuntu 20.04
should have been added automatically. This book uses Windows Terminal going forward
in this chapter, but both options should work.

Installing .NET on Linux
We recommend you install .NET on Ubuntu by using APT:

1.	 Run the following commands to add Microsoft's repositories:

wget https://packages.microsoft.com/config/ubuntu/20.04/
packages-microsoft-prod.deb -O packages-microsoft-prod.deb
sudo dpkg -i packages-microsoft-prod.deb

2.	 Install the SDK:

sudo apt-get update; \
sudo apt-get install -y apt-transport-https && \
sudo apt-get update && \
sudo apt-get install -y dotnet-sdk-5.0

56 Cross-Platform Setup

Note
There are a couple of different ways to install .NET on Linux, and things may
change over time. If you experience issues while installing .NET, check the
instructions online at https://docs.microsoft.com/en-us/
dotnet/core/install/linux-ubuntu.

Everything should now be in place for creating and running a .NET application. It is time
to test the theory in practice:

1.	 Create a new directory and change into it:

mkdir LinuxHelloWorld && cd LinuxHelloWorld

2.	 Linux running in WSL2 does not support a graphical UI yet, so we need to do the
editing via non-graphical utilities:

sudo vi View/Home/Index.cshtml

3.	 Vi is not exactly intuitive, but press Insert and edit the code to look like this:

@{
 ViewData["Title"] = "LinuxHelloWorld";
}
<div class="text-center">
 <h1 class="display-4">Running on @Environment.
 OSVersion</h1>
</div>

4.	 To save and exit, press Esc followed by :wq, and then hit Enter.

5.	 Test the app with sudo dotnet run. You should see the output indicate that it is
running. See Figure 2.7:

Figure 2.7 – Using dotnet run on Linux

https://docs.microsoft.com/en-us/dotnet/core/install/linux-ubuntu
https://docs.microsoft.com/en-us/dotnet/core/install/linux-ubuntu

Getting started on Windows, Linux, and macOS 57

6.	 You can test this with some more cross-platform magic. You do not have a browser
running on this Ubuntu. You most likely do have one in Windows 10, so you
can open that and browse to https://locahost:5001. See Figure 2.8 for an
example of browsing a web app that's running on Linux:

Figure 2.8 – Browsing a web app that's running on Linux

7.	 Return to the Linux shell and terminate the running app with Ctrl+C.

We saw that the vi utility was sufficient for the minor edits that we made to the code, but
not everyone will want to go all-in on Vi as an editor for writing C# code.

Vi "exit strategy"
If you are new to Vi, it can be confusing, because it works differently to most
text editors that you might be used to in the Windows world. You might end
up being unsure about what you have actually edited, or how to correct it. The
exit strategy (if you feel like a mistake was made) is to quit Vi without saving
the changes. This is done by pressing the Esc key, pressing : (the colon) (you
should see it appear in the lower-left corner), and then typing q! (include the
exclamation mark), followed by Enter. You can then re-attempt editing with
a clean slate.

Fortunately, there is another option here as well. In the previous chapter, we showed
you how useful Visual Studio Code is, so if you haven't already installed it, please do so.
We will step through how to use Visual Studio Code (VS Code) as the editor for your code
on Linux:

1.	 Open Visual Studio Code (in Windows 10).

2.	 Install the Remote – WSL extension from within VS Code. See Figure 2.9:

Figure 2.9 – Visual Studio Code Remote WSL extension

58 Cross-Platform Setup

3.	 Go back to your Linux shell in WSL and type code . (including the punctuation
mark).

4.	 After an initial bit of setup work, Visual Studio Code will load in Windows 10.
You will observe that there's an indicator in the lower-left corner referring to WSL.
See Figure 2.10:

Figure 2.10 – Visual Studio Code connected to WSL

5.	 If you have the C# Extension installed in VS Code, you can go to the debug pane
(at the bottom). See Figure 2.11:

Figure 2.11 – .NET Debug tab for Linux

6.	 Click the little green arrow to start the debugger. When things have finished
building, you should see the same output as before with the LinuxHelloWorld
app running in the browser. (VS Code launches the browser for you.) If you take
a look in the Terminal window, you will see the application starting in WSL. See
Figure 2.12:

Getting started on Windows, Linux, and macOS 59

Figure 2.12 – Visual Studio Code terminal output

This session is separate to the one you are running in the Windows Terminal shell, so
you can work in parallel there if you like.

Now you can develop code in Windows, which executes on Linux running on Windows.
This can take a little while to digest, but the takeaway from this section is that the
cross-platform story for Linux is powerful.

If you have an Apple device (that's running macOS) available, then you can bring that out
now. Next, we take a look at the mac story for .NET.

macOS
There are two main tools you can use for developing a .NET application on a Mac.
You can either use Visual Studio for Mac or Visual Studio Code. We will take a look at
using Visual Studio Code (VS Code) first. You can download it from https://code.
visualstudio.com/.

After installing Visual Studio Code, we recommend that you make it accessible from the
shell, so that you can start it from the Terminal.

To make VS Code accessible, perform the following steps:

1.	 Launch Visual Studio Code.

2.	 Open the command palette (Shift+cmd+P) and type shell command, as shown in
Figure 2.13:

Figure 2.13 – The shell command installer

https://code.visualstudio.com/
https://code.visualstudio.com/

60 Cross-Platform Setup

3.	 You will also want to make sure the C# extension is installed for VS Code. See
Figure 2.14:

Figure 2.14 – Visual Studio C# extension
Once this is done, you can install .NET by going to https://dotnet.
microsoft.com/download?initial-os=macos.

4.	 Open the installer, and you will be greeted with a wizard for installing .NET.
See Figure 2.15:

Figure 2.15 – The .NET installer for macOS

https://dotnet.microsoft.com/download?initial-os=macos
https://dotnet.microsoft.com/download?initial-os=macos

Getting started on Windows, Linux, and macOS 61

Unless you want to modify where the installation is stored, you can click through
it by choosing the Next option.

5.	 To verify the .NET version on macOS, open the Terminal and run dotnet –
version. See Figure 2.16:

Figure 2.16 – Verifying the .NET version on macOS

6.	 You also need to generate certificates to run with HTTPS. This is done with the
sudo dotnet dev-certs https –-trust command, as shown in
Figure 2.17:

Figure 2.17 – Generating and installing developer certificates on macOS

7.	 Create a folder (mkdir webapp) and change into it (cd webapp).

8.	 Run dotnet new mvc to generate a simple web app. Then, run code . to open
it in Visual Studio Code.

9.	 You might see a notification in the lower-right corner about missing assets.
See Figure 2.18:

Figure 2.18 – Missing assets in Visual Studio Code
You should click Yes to add the assets.

62 Cross-Platform Setup

10.	 VS Code shows the file structure on the left-hand side of the UI. See Figure 2.19:

Figure 2.19 – The file structure in Visual Studio Code for Mac

11.	 Open Index.cshtml and make a minor edit to the contents:

@{
 ViewData["Title"] = "LinuxHelloWorld";
}
<div class="text-center">
 <h1 class="display-4">Running on @Environment.
 OSVersion</h1>
</div>

12.	 To set a breakpoint, click next to the line number (6).

13.	 There is a separate debug section:

Getting started on Windows, Linux, and macOS 63

Figure 2.20 – Visual Studio Code debug pane on macOS

14.	 Click the little green arrow to start your program. It should start up your browser,
which should look like the following figure:

Figure 2.21 – Browsing a web app that's running on macOS

You will notice that it does not say Mac or Apple, but for starters, the main concern you
solved was that you managed to get .NET working. That completes your installation of VS
Code on a Mac.

As mentioned, you can install a more complete version of Visual Studio on macOS as well.

Visual Studio 2019 for Mac
Visual Studio Code is not a bad experience. However, Visual Studio 2019 is available on
macOS, so you might prefer that.

64 Cross-Platform Setup

In general, there is a more "Mac-ish" feel over it. (The look, feel, and interactions have
been built to feel similar to the overall Mac experience.) The file hierarchy is in the left
pane, as shown in Figure 2.22:

Figure 2.22 – Visual Studio 2019 for Mac file hierarchy

In the middle of Visual Studio, the main pane has a slightly different look to its Windows
counterpart (see Figure 2.23):

Getting started on Windows, Linux, and macOS 65

Figure 2.23 – Visual Studio 2019 for Mac main pane

As with the Windows experience, there are more options in Visual Studio 2019 (VS 2019)
than Visual Studio Code. Thus, for web app development, it is mostly a matter of which
tool you prefer, with some more knobs and dials in VS 2019 than VS Code, while the basic
functionality is present in both. For VS 2019, Visual Studio Community for Mac is the free
version.

Visual Studio for Mac was originally based on Xamarin Studio for Mac. If you are into
mobile development for Apple's platforms, it might be a better choice to use the full
version of Visual Studio rather than Visual Studio Code. We will revisit this topic later in
this chapter, in the Cross-platform for mobile devices section.

A word on cross-platform and containers
Containers is a hot topic these days, and they will be covered in detail in Chapter 9,
Containers. However, we should explain the relationship between containers and
cross-platform.

66 Cross-Platform Setup

The previous sections showed us running code directly on a platform. The Linux version
ran on Ubuntu, and the macOS version ran on a Macbook. For more advanced use cases,
you might want to containerize your code, but this does not mean you can freely mix and
match the technologies.

A container is comparable to a virtual machine lite, and it depends on the host it is
running on. This means that a Linux container needs to run on a Linux host. Running
a Windows Server 2019 container requires a Windows Server 2019 host. This extends
across Windows Server versions as well—a Windows Server 2016 host will run Windows
Server 2016 containers and will not support Windows Server 2019 containers. A Linux
container on Windows 10 is not covered by cross-platform compatibility.

However, WSL2 can function as a Linux host. Thus, you can run a Linux container on top
of WSL and achieve a cross-platform container development story. We'll expand on this in
Chapter 9, Containers.

With the right hardware, you can use Windows with Hyper-V and have a Linux virtual
machine as a Linux host for running Linux-based containers on top.

It's no wonder you might get confused with all the layers of virtualization involved in this.

Making your code cross-platform
When beginning to build a cross-platform solution, you need to make sure that the Hello
World web app runs on more than Windows. However, there is more to enjoying the
benefits of these platforms. Let's look both at how Microsoft supplies built-in mechanisms
and what you can do yourself.

Background worker services
In an ASP.NET web app, a lot of the things happening in the user interface are
event-driven. For instance, in the previous chapter, we showed you some of the new
features in C# 9, including an example class for US cities, which consists of a name and
a zip code. Thus, if you extended that to an ASP.NET application, you might build
a web page that includes a textbox for entering a zip code and a button for looking up
the corresponding city name.

Zip codes are fairly static and not something that change every week. However, you
might still want to make sure that your database is up to date, and so you could choose
to perform a synchronization with the US Postal Service's master database (for example).
This would not be driven by an end user clicking in the UI, but it would happen by itself
in the background.

Getting started on Windows, Linux, and macOS 67

.NET has a template that would be suitable for this worker, which generates a console
app that you can extend with such functionality. The default behavior is printing the
current datetime, which is sufficient for our purposes, but you can make it more advanced
on your own.

Open up the command line, create a new directory, and change into this directory.
Once you're done, perform the following steps to create a new solution:

1.	 Run dotnet new worker.

2.	 Run dotnet add package Microsoft.Extensions.Hosting.
WindowsServices.

3.	 Run dotnet add package Microsoft.Extensions.Hosting.
Systemd.

4.	 Run dotnet run:

Figure 2.24 – Using dotnet run for a worker service

5.	 Run code . to load the project in Visual Studio Code.

This works nicely, but there is a missing piece. It currently runs as a console app, meaning
that it must be started and run in a console window. This is not suitable for a website,
where it's supposed to be done completely in the background.

68 Cross-Platform Setup

In Windows, this is done by installing the app as a Windows service (see Figure 2.25):

Figure 2.25 – Windows Services

It is probably not surprising that this does not sound like it's cross-platform.

Linux has a similar construct called systemd, so on an operating system level, you're
not blocked. In Linux, services are implemented through the systemd daemon, which is
supported by .NET.

WSL and systemd
Note that at the time of writing this book, systemd is not supported by
Windows Subsystem for Linux. This means that in order to fully test this code
on Linux, you will need either a Linux virtual machine running locally or an
instance of a Linux virtual machine running in Azure.

In other words, we need to modify our application to support two operating system
concepts. This sounds complicated, but in reality, it's fairly simple.

Going back to Visual Studio Code, open up Program.cs and make some minor
changes, so it looks like this:

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

namespace Chapter_02_Workers

Getting started on Windows, Linux, and macOS 69

{
 public class Program
 {
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args)
 =>
 Host.CreateDefaultBuilder(args)
 .UseWindowsService()
 .UseSystemd()
 .ConfigureServices((hostContext, services) =>
 {
 services.AddHostedService<Worker>();
 });
 }
}

The two important pieces here are UseWindowsService and UseSystemd. The .NET
runtime is able to understand whether it is executing on Windows or Linux, and then it
will use the corresponding version. It will ignore the other one, so you do not need to have
additional logic on your behalf to figure out which one to use.

Running the previous code will produce the same output as before, so you will not
immediately notice a change. It is important to understand that while the preceding code
will make the code cross-platform, it will not automatically install itself as a Windows
service or systemd daemon.

To get a Windows service installed on your developer machine, run the following
commands in a command-line window:

1.	 dotnet publish –configuration Release

2.	 sc create dotnetService binPath = c:\code\foo.exe (where
foo.exe is the file generated by the previous command)

3.	 sc start dotnetService

This should see you through development purposes, but it might not work when moving
the code to a different environment that's not running on your local developer machine.
It might be a more elaborate process to set up the service in these cases, so if you need
to do that, there is an alternative configuration process. There are instructions in the
appendix for this chapter on how to set up the services.

70 Cross-Platform Setup

For Linux, the instructions are as follows:

1.	 Run sudo nano /etc/systemd/system/dotnetd.service to create
a service.

2.	 Make sure the contents are similar to this:

[Unit]

Description=.NET Chapter 02 systemd daemon

[Service]

WorkingDirectory=/var/www/dotnetd

ExecStart=/usr/local/bin/dotnet /var/www/dotnetd/dotnetd.
dll

Restart=always

Restart service after 10 seconds if the dotnet service
crashes.

RestartSec=10

KillSignal=SIGINT

SyslogIdentifier=dotnet-daemon

User=apache

Environment=ASPNETCORE_ENVIRONMENT=Production

[Install]

WantedBy=multi-user.target

3.	 Enable the service: sudo systemctl enable kestrel-dotnetd.
service.

4.	 Start the service: sudo systemctl start kestrel-dotnetd.service.

5.	 Verify that the service is running: sudo systemctl status kestrel-
dotnetd.service.

The output will be similar to this:
kestrel-dotnetd.service - .NET Chapter 02 systemd daemon

 Loaded: loaded (/etc/systemd/system/kestrel-dotnetd.
service; enabled)

 Active: active (running) since Thu 2020-10-18
04:09:35 CET; 35s ago

Main PID: 9021 (dotnet)

Getting started on Windows, Linux, and macOS 71

 CGroup: /system.slice/kestrel-dotnetd.service

 └─9021 /usr/local/bin/dotnet /var/www/
dotnetd/dotnetd.dll

This is a great example of how .NET can help you along the way, but not all use cases
can be solved that easily. Next, we will walk through a more elaborate example of
cross-platform functionality.

A more complicated cross-platform example
There are scenarios where you need to deal with cross-platform that have more bits and
pieces to it than .NET can handle automatically. We've already mentioned how Linux
would not understand c:\WebApp\HelloWorld.txt, so let's look at a slightly more
complicated example.

Let's say we have a website where we depend on encrypting and/or signing strings of
text. (This could be part of a larger identity system.) We recommend doing this by using
certificates. We want this code to work both for Windows and Linux, and most methods
for working with certificates should be entirely cross-platform compatible. However,
Windows and Linux have different ways to work with certificates on the operating system
level. More specifically, they are generated differently and accessed differently. We will
implement both options.

To generate a certificate on Windows, perform the following steps:

1.	 Open Windows Terminal with a PowerShell tab.

2.	 Run the following command:

$cert = New-SelfSignedCertificate -Type Custom -Subject
"CN=Chapter_2_Certificate" -TextExtension @("2.5.29.37={text}
1.3.6.1.5.5.7.3.3") -KeyUsage DigitalSignature -KeyAlgorithm
RSA -KeyLength 2048 -NotAfter (Get-Date).AddYears(2)
-CertStoreLocation "Cert:\CurrentUser\My"
$cert.Thumbprint

72 Cross-Platform Setup

3.	 Take a note of the thumbprint, because we need it in the code. See Figure 2.26:

Figure 2.26 – Generating a certificate on Windows

You can also verify the presence of the certificate in the User Certificate store in Windows
10 (see Figure 2.27). (It can be located by starting to type certificate on the search
bar in Windows.):

Figure 2.27 – The User Certificate store in Windows 10

To generate a certificate on Linux, perform the following steps:

1.	 Open Windows Terminal with an Ubuntu 20.04 tab.

2.	 Run the following commands:

openssl req -x509 -newkey rsa:4096 -keyout myKey.pem -out cert.
pem -days 365 -nodes
openssl pkcs12 -export -out keyStore.p12 -inkey myKey.pem -in
cert.pem
openssl x509 -in cert.pem -noout -fingerprint

You will need to provide some values when generating the certificate, but for the
purposes of this chapter, these values do not need to adhere to any actual data.

Do not enter a password when prompted—just press Enter to set a blank/null
password.

3.	 Take a note of the thumbprint, as we will need it afterward.

Getting started on Windows, Linux, and macOS 73

You may notice that the thumbprint looks different in Windows and Linux. Windows uses
the format 12AB…, whereas Linux outputs 12:AB:… instead. This is purely a matter of
visual representation. Linux prints in a more readable format, but the actual thumbprint is
not formatted differently. If you remove the colons from the Linux version, you will see that
the number of characters is the same as the Windows version (as shown in Figure 2.28):

Figure 2.28 – Generating a certificate on Linux

With the certificates in place for both Windows and Ubuntu, we will create a web app that
will use it. So as not to complicate matters, this code just loads the certificate and prints
out the thumbprint and the common name to verify that the code is able to read (and use)
certificates. The steps to create an app that work with certificates are as follows:

1.	 Open Windows Terminal and create a new directory: C:\Code\Book\
Chapter_02_Certificates.

2.	 Change into the directory and run dotnet new mvc.

3.	 Run dotnet add package Microsoft.IdentityModel.Tokens.

4.	 Start Visual Studio Code with code ..

5.	 Open HomeController.cs.

74 Cross-Platform Setup

6.	 Add the following two using lines at the top:

using System.Security.Cryptography.X509Certificates;
using Microsoft.IdentityModel.Tokens;

7.	 Edit the controller to look like this (some parts are omitted for readability):

public class HomeController : Controller
 {
 private readonly ILogger<HomeController> _logger;
 private static Lazy<X509SigningCredentials>
 SigningCredentials;

 public HomeController(ILogger<HomeController> logger)
 {
 _logger = logger;
 }

 public IActionResult Index()
 {
 var SigningCertThumbprint = "WindowsThumbprint";
 SigningCredentials = new
 Lazy<X509SigningCredentials>(() =>

 {
 X509Store certStore = new X509Store(StoreName.My,
 StoreLocation.CurrentUser);
 certStore.Open(OpenFlags.ReadOnly);
 X509Certificate2Collection certCollection =
 certStore.Certificates.Find(
 X509FindType.FindByThumbprint,
 SigningCertThumbprint,
 false);
 // Get the first cert with the thumbprint
 if (certCollection.Count > 0)
 {
 return new
 X509SigningCredentials(certCollection[0]);
 }
 throw new Exception("Certificate not found");
 });
 var myCert = SigningCredentials.Value;
 ViewBag.myCertThumbprint =
 myCert.Certificate.Thumbprint.ToString()
 ViewBag.myCertSubject =
 myCert.Certificate.SubjectName.Name.ToString();;

Getting started on Windows, Linux, and macOS 75

 return View();
 }
…

The important bit here is that the controller attempts to use .NET libraries that
are specific for reaching into the certificate store of Windows (compatible with
Windows 10 and Windows Server). The certificates are loaded into an array.
We specified a thumbprint that should be unique to only one certificate. If you have
the incorrect thumbprint defined, or for some reason the app cannot access the
certificate store, an error will be thrown that no certificate could be found.

If a certificate is found, then the values are read. The thumbprint and subject name
attributes are stored in the ViewBag for easy retrieval in the view.

8.	 Edit the Index.cshtml file to look like this:

@{
 ViewData["Title"] = "Home Page";
}

<div class="text-center">
 <h1 class="display-4">Certificate info</h1>
 <p>Certificate thumbprint: @ViewBag.
 myCertThumbprint</p>
 <p>Certificate subject: @ViewBag.myCertSubject</p>
</div>

9.	 Run the app. You will see the certificate info, as shown in Figure 2.29:

Figure 2.29 – Output for the Windows certificate

76 Cross-Platform Setup

The next logical step would be to switch to Linux, execute dotnet run, and refresh the
browser. Sadly, this will give you an error, as shown in Figure 2.30:

Figure 2.30 – Error using Windows Certificate on Linux

There are two reasons why this fails:

•	 We didn't change the thumbprint.

•	 We tried looking up the certificate through the Windows Certificate store.

We will fix this, but first we need to prepare the certificate in Linux. When we previously
generated the certificates in Linux, we were in the home directory (if you were in
a different directory, replace it accordingly in the instructions).

By executing ls -l, we see that there are a couple of files for the certificate.
See Figure 2.31:

Figure 2.31 – Listing certificate files in Linux

We want to make this friendlier for our code, as well as deployment purposes. Rename the
certificate, as per the following steps:

1.	 Rename the .p12 file, using mv keyStore.p12 LinuxThumbprint.p12.

2.	 Rename the cert.pem file, using mv cert.pem LinuxThumbprint.pem.

Getting started on Windows, Linux, and macOS 77

3.	 These files should be moved to a more appropriate location. For the purposes of this
chapter, that would be the directory where our code exists:

mv LinuxThumbprint.p12/mnt/c/Code/Book/Chapter_02_
Certificates/LinuxThumbprint.p12
mv LinuxThumbprint.cert /mnt/c/Code/Book/Chapter_02_
Certificates/LinuxThumbprint.cert

This means our code will be able to easily locate the certificate files.

Integrating certificates for apps that are deployed to the cloud
A word of advice here. This approach works, as long as we manage the life cycle
of the certificates inside the code's life cycle. It is not the best solution for cloud
deployments where you often manage the certificates separately.

Azure recommends storing private certificates (.p12 files) in /var/ssl/
private, if you run your app in Azure App Services and store the certificates
in Azure Key Vault.

Now that the certificates are in place, we can fix our code. Perform the following steps:

1.	 Return to Visual Studio Code (you can still edit in Windows if you like) and open
HomeController.cs.

2.	 Change the code here:

var SigningCertThumbprint = "WindowsThumbprint";

To the following:
var SigningCertThumbprint = "LinuxThumbprint";

3.	 Comment out the current certificate loading:

/*
SigningCredentials = new Lazy<X509SigningCredentials>(()
=>
…
 throw new Exception("Certificate not found");
});
*/

var myCert = SigningCredentials.Value;

78 Cross-Platform Setup

4.	 Insert the following code instead:

public IActionResult Index()
{
 /*
 Windows Certificate Loading
 */

 var SigningCertThumbprint = "LinuxThumbprint";
 var bytes =
 System.IO.File.ReadAllBytes($"{SigningCertThumbprint}.
 p12");
 var cert = new X509Certificate2(bytes);

 SigningCredentials = new Lazy<X509SigningCredentials>(()
 =>
 {
 if (cert != null)
 {
 return new X509SigningCredentials(cert);
 }
 throw new Exception("Certificate not found");
 });

 var myCert = SigningCredentials.Value;

The purpose of this code is the same as the Windows version. It reads the certificate
and writes two of the attributes into the ViewBag for rendering. Where it differs
from the code that handles Windows is that Linux does not have a certificate store.
The code simply attempts to locate a file and read the byte values. If the file does not
exist, or the contents cannot be converted to a certificate, then an error is thrown
about how the certificate was not found.

5.	 Run the app.

Opening the browser, you should see a similar view, but with other values as shown in the
following screenshot:

Figure 2.32 – Output for the Linux certificate

Getting started on Windows, Linux, and macOS 79

If you want to have a true cross-platform application, you can go the extra mile and add
checks for which platform the code runs on. Add a few checks:

public IActionResult Index()
{
 //Windows
 if (Environment.OSVersion.Platform.ToString() == "Win32NT")
 {
 //Windows logic
 ...
 }

 //Linux
 if (Environment.OSVersion.Platform.ToString() == "Unix")
 {
 //Linux logic
 ...
 }

 var myCert = SigningCredentials.Value;
 ViewBag.myCertThumbprint =
 myCert.Certificate.Thumbprint.ToString();
 ViewBag.myCertSubject =
 myCert.Certificate.SubjectName.Name.ToString();;

 return View();
}

This illustrates that there might be some extra work involved in building cross-platform
apps, other than just making sure you run .NET 5. However, it is possible and might be
worth it. With the example shown here, it means that you can have developers doing their
work primarily on Windows and still deploy to Linux hosts in production (provided you
test for these edge cases).

Self-contained .NET apps
The discussion so far in this chapter has revolved around making sure everything works
across different platforms. There are, however, times when you do not have that need, and
you might want to be more specific as to what you will support.

80 Cross-Platform Setup

Two examples where this may apply are as follows:

•	 You create a web app that is to be deployed on Windows servers. You do not control
these servers, and the operations team that own the servers have not deployed the
.NET 5 runtime yet. Unfortunately, their update schedule does not coincide with
your planned release.

•	 You have a temperature sensor that is connected to a Raspberry Pi, and a .NET
application is responsible for sending the data to Azure, for building a graph over
time. Compiling the application on the device is not an option.

Both these use cases can be solved by creating self-contained .NET apps. If an application
is self-contained, this means it has everything it needs to run without installing the .NET
runtime.

Generating files for Windows Server
For a case where you don't control the operating system on a Windows server, it means
you can deploy .NET 5 applications, even if the server only has .NET Core 3.1 installed,
or even if there is no .NET runtime at all.

To generate files for this, run the dotnet publish -r win-x64 command. The files
generated can be copied to the server and executed without complaints about the .NET
runtime.

Generating files for the Raspberry Pi
For the Raspberry Pi, even though your developer machine runs Windows 10, you can
compile for a different operating system. (This is known as cross-compilation.) The
resulting bits can be copied to the device and run immediately.

To generate these files, run the dotnet publish -r linux-arm64 command.

If you want to generate files for other platforms, there is a list of valid identifiers you can
use, which you can find at https://docs.microsoft.com/en-us/dotnet/
core/rid-catalog.

A drawback of this approach is that the application is larger, since there are no shared
components. If your server/device only runs one application, then this might not be an
issue, but if you have 20 different .NET apps that are all self-contained, then there is a lot
of overhead. This might not be an issue with rack servers that have plenty of storage, but
for a Raspberry Pi, this might be a concern.

https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog

Getting started on Windows, Linux, and macOS 81

It is hard to put exact numbers on this. The .NET team continually iterates on improving
everything regarding size, whether it is self-contained or not. After testing with the
certificate reading sample application (in the previous section), we established the
amounts given in the following figure:

Figure 2.33 – Size comparison of the dotnet publish commands

You will probably not see the exact same numbers when testing on your machine, but it
gives a general idea of the difference in size. It is possible to trim the output, but even then,
it is clear that using self-contained apps is not a space saver on a per-app basis.

For a storage-constrained device that has the .NET runtime already installed, you may
want to employ a strategy that combines the best of two strategies. You make it runtime-
dependent and platform-specific. This means that you create one file with the cross-
platform components and a different file with the components that are specific for the
target platform.

You can do this by running the dotnet publish –r linux-arm64 –-self-
contained false command.

Cross-platform for mobile devices
Developing mobile apps is not covered in this book, and you are not likely to deploy
web applications to mobile devices either. It is, however, a part of the cross-platform
discussion, so a brief look is warranted.

We covered the history of the different .NET frameworks in the previous chapter and
touched upon the fact that support for running .NET code on mobile devices was not
originally a Microsoft initiative. In other words, although you could use C# for creating
mobile apps, it was not officially part of the .NET technology stack. Since Microsoft
bought Xamarin, it has become official, and significant effort has been made in making
the tools integrated with .NET and Visual Studio.

82 Cross-Platform Setup

We already asked why you should cross-platform capabilities in general, but the question
bears repeating with mobile devices. Apple provides tooling and frameworks for iOS, and
Google provides tooling and frameworks for Android, so why would you use .NET?

To answer this, you should look at a couple of aspects.

First, what kind of application are you writing? Is it a fairly generic data entry line-of-
business app, or is it highly optimized for the Apple or Android ecosystem? There will
always be some gap between what Xamarin supports and what the native tooling supports
(just like it is for .NET in Windows), and sometimes Xamarin will not cover what
you need.

What skill set do your developers have, and how many developers are on your team?
Xamarin is great if you are proficient in C#, since you don't have to learn a new language.
If, however, you have a strong Java background, it is probably easier to get started with
Kotlin for creating Android apps.

If your development team is large enough to support having dedicated iOS developers,
there's nothing wrong with them using Apple's Xcode either.

Even though there are bonuses, such as reusing code across platforms, you should reflect
on these things before starting a new mobile app project, but for the purposes of learning,
you are, of course, encouraged to take a look at how it works.

To install Xamarin, you will need to check Mobile development with .NET in Visual
Studio Installer. See Figure 2.34. (You can do this either during the initial installation
or by reopening it later to modify your installation.):

Figure 2.34 – Enabling Mobile development for Visual Studio

This will install the necessary bits for both Android and iOS.

For Android, you can choose to install an Android emulator and get going fairly quickly.

For iOS, there are some extra hurdles. You can develop for iOS on a Windows machine,
but to build and publish your code, you need a device with macOS. Visual Studio supports
connecting to a Mac remotely to do this task, so that you don't need to use the Mac as the
developer experience. However, that is one more thing to sort out, especially if you are
a one-man development team. You can share a Mac among developers on a team, and
you can also pay for "Macs in the cloud."

Getting started on Windows, Linux, and macOS 83

Creating a HelloWorld iOS application
For this reason, in order to create an iOS app, it is easier to step back to your Mac and start
Visual Studio 2019 for Mac. Perform the following steps:

1.	 Create a new solution and choose iOS-App-Single View App.

2.	 Fill in the app name, the organization identifier, which devices to support (iPhone,
iPad, or both), and the operating system level required. See Figure 2.35:

Figure 2.35 – Configuring your iOS app

3.	 Fill in the solution name, as shown in Figure 2.36:

Figure 2.36 – Configuring the Single View app

84 Cross-Platform Setup

4.	 Open LaunchScreen.storyboard and add a label with a short message.
See Figure 2.37:

Figure 2.37 – Creating a launch screen label for an iOS app

5.	 You can also take a look the Main.cs file, to make sure everything is in order:

using UIKit;

namespace HelloWorldiOS
{
 public class Application
 {
 // This is the main entry point of the application.
 static void Main(string[] args)
 {
 // if you want to use a different Application
 // Delegate class
 // from "AppDelegate" you can specify it here.
 UIApplication.Main(args, null, "AppDelegate");
 }
 }

6.	 Click the Play icon to start debugging. An emulator will be loaded, as shown in
Figure 2.38:

Getting started on Windows, Linux, and macOS 85

Figure 2.38 – Launching the HelloWorldiOS app

For this to work, you should already have downloaded and installed Xcode on your Mac.

To continue covering the cross-platform mobile experience, let's create something similar
on Android.

86 Cross-Platform Setup

Creating a HelloWorld Android app
Go back to Windows, and once you have ensured that you have the necessary components
installed for Visual Studio, you can follow these steps to create an Android app:

1.	 Create a new HelloWorldAndroid project in Visual Studio by using the Mobile
App template. See Figure 2.39:

Figure 2.39 – Creating an Android app

2.	 Choose a name for the project, as shown in Figure 2.40:

Getting started on Windows, Linux, and macOS 87

Figure 2.40 – Configuring your Android project

3.	 Select a new UI template, as shown in Figure 2.41:

Figure 2.41 – Setting up a UI template

88 Cross-Platform Setup

4.	 You can also take a look the MainActivity.cs file (parts omitted for readability)
to make sure that everything is ready:

using System;
using Android.App;
using Android.OS;
using Android.Runtime;
using Android.Support.Design.Widget;
using Android.Support.V7.App;
using Android.Views;
using Android.Widget;

namespace AndroidApp
{
 [Activity(Label = "@string/app_name",
 Theme = "@style/AppTheme.NoActionBar", MainLauncher =
 true)]

 public class MainActivity : AppCompatActivity
 {
 protected override void OnCreate(Bundle
 savedInstanceState)
 {
 base.OnCreate(savedInstanceState);
 Xamarin.Essentials.Platform.Init(this,
 savedInstanceState);
 SetContentView(Resource.Layout.activity_main);

 Android.Support.V7.Widget.Toolbar toolbar =
 FindViewById<Android.Support.V7.Widget.Toolbar>
 (Resource.Id.toolbar);

 SetSupportActionBar(toolbar);

 FloatingActionButton fab =
 FindViewById<FloatingActionButton>(Resource.
 Id.fab);

 fab.Click += FabOnClick;
 }

 public override bool OnCreateOptionsMenu(IMenu menu)
 {
 …
 }

 public override bool OnOptionsItemSelected(IMenuItem
 item)
 {
 …
 }

Getting started on Windows, Linux, and macOS 89

 private void FabOnClick(object sender, EventArgs
 eventArgs)
 {
 …
 }

 …
 }
}

5.	 Run the app through the debugger, as shown in Figure 2.42:

Figure 2.42 – Launching the HelloWorldAndroid app

90 Cross-Platform Setup

After taking a look at the code for both iOS and Android, we can see that it is recognizable
as C# code, but the boilerplate code does not look like what is generated when you use the
web app template. This highlights another important point, with regard to cross-platform
on mobile. If you're interested in Italian sports cars, saving up money to be able to buy a
Ferrari might be a good start, but having a Ferrari does not mean you are able to drive it
at maximum speed. You will be able to perform basic tasks by knowing how to drive a car
in general, but it takes training to drive at high speeds (if you want to do it safely). It's the
same with mobile devices—there are nuances from the platform that you need to learn
before you have performant code.

.NET is not able to fix the non-coding issues for a platform either. Apple for instance, has
fairly strict rules for what they allow apps running on their devices to do. So, if you want
to minimize the odds of rejection, when publishing on the App Store, you have some
guidelines to read through first.

This is not to discourage you from creating mobile apps or from using .NET for this
purpose, but rather we want to highlight how cross-platform can still be complicated, even
with the assistance .NET gives you.

Even if you have not been able to test everything that we covered here, you can always
refer back to these instructions if you find yourself having more devices for development
purposes. While we covered a lot of testing and experimentation, there are some details
we did not go into, such as how to debug code that's running on Linux, when you're not
using the combination of Visual Studio Code and WSL2. So, next we will set up things for
those use cases where the debugging process requires some extra steps to get working.

Debugging Linux on Windows with Visual
Studio 2019
Earlier in this chapter, we created a worker that could run as a worker service, and we ran
it through the Remote extension in Visual Studio Code. There are, however, cases where
you either cannot do everything you need through Visual Studio Code, or where the
Linux host is not even running on the same machine that you will debug from.

This doesn't prevent you from debugging the code running in Linux, but there are an
extra couple of hoops to jump through. We will look at using Visual Studio 2019 and
connecting over SSH, which is a common protocol for remote connections to a Linux
system.

Debugging Linux on Windows with Visual Studio 2019 91

We can still test using WSL2, so in this case we will still connect to our local machine. It is
possible to do a similar setup for other Linux distributions. The following instructions are
for enabling SSH on the Ubuntu 20.04 that we have already set up:

1.	 Enable the SSH server:

sudo apt-get install openssh-server unzip curl

2.	 Edit sshd_config to allow a password login:

sudo vi /etc/ssh/sshd_config

3.	 Find the line PasswordAuthentication no and change it to
#PasswordAuthentication no. (Press Insert to allow editing.)

4.	 Exit vi by pressing Esc, followed by entering :wq.

5.	 Start the ssh service:

sudo service ssh restart

6.	 To check the IP address of the Ubuntu installation that we are using, use the
command ip addr. This is the one found attached to inet. In Figure 2.43, it is
172.28.88.220:

Figure 2.43 – Verifying the IP address in WSL2

92 Cross-Platform Setup

7.	 Test that you can connect to the SSH server with the Windows 10 SSH client. See
Figure 2.44. The SSH client is an optional feature in Windows, so make sure you
have installed it. Then, enter the following command, either from PowerShell or
from the command line:

ssh user@ipaddress

Here's how the output looks like:

Figure 2.44 – Testing the Windows SSH client
Notice that the first line in the screenshot shows a Windows prompt (C:\), whereas
the last line shows an Ubuntu shell (andreas@AH-BOOK).

Once this is in place, you can open Visual Studio 2019 and connect to our code:

1.	 To start the app you want to debug, open the Linux instance in Windows Terminal
and run dotnet run inside the correct folder—in our example, /mnt/c/Code/
Book/Chapter_02_Workers.

2.	 Make sure it runs without any issues, and then open the same solution in Visual
Studio 2019.

3.	 Press Ctrl+Alt+P to open the Attach Process window.

4.	 Select SSH as the Connection type.

Debugging Linux on Windows with Visual Studio 2019 93

5.	 Connect to the same SSH server as when we were testing it. Connect to user@
ipaddress. Refer to Figure 2.45 as an example of the username and IP address:

Figure 2.45 – Attach to Process dialog

6.	 You will be prompted to enter your password as well, and if things work you should
see a list of running processes. See the following screenshot:

Figure 2.46 – Running processes on the remote host

7.	 Locate dotnet run and click Attach.

8.	 If everything went to plan, you should be able to hit breakpoints, read variables,
output, and so on, directly from Visual Studio 2019 on Windows.

Windows Firewall
The first time you open the remote debug dropdown (after opening the
Attach to Process window), you will be prompted to allow the connections
through the Windows Firewall. Accept this to allow the debugger to establish
connectivity.

94 Cross-Platform Setup

In this case, the Linux instance was running on WSL2, but Visual Studio 2019 does not
recognize this as a special case, so it doesn't matter if you attach to a different host. This
may not be as simple as Visual Studio Code, but it is useful for the use cases where you
need to do more complicated things.

We have gone through cross-platform .NET in many combinations, and this wraps up the
current chapter.

Summary
We saw in this chapter that cross-platform can be a complicated topic, but we covered
the basic use cases with simple web apps for Linux and macOS, as well as more advanced
cross-platform web apps supporting both Linux and Windows at the same time.

Web apps may very well need supporting apps in the background, so we also took a look
at creating backend worker services. For these apps, .NET provides behind-the-scenes
magic for handling Windows and Linux services for enabling cross-platform services.
There were some extra steps involved in installing the application as a service, and we
went over how to install these apps as services in the operating system.

Mobile apps for iOS and Android devices are popular, and although they are not the focus
of this book, we explored how to get up and running on both of those platforms with the
cross-platform capabilities of .NET. We also explained some of the quirks involved in the
process.

Rounding off the chapter, we took a look at how you can enable more advanced Linux
debugging use cases by demonstrating how Visual Studio 2019 running on Windows
can connect to a remote Linux system over SSH. You are now ready to run your code on
the platforms that you have at your disposal. If you run into problems with the code, you
should also have an idea of how to look into debugging those issues.

In the next chapter, we will go deeper into best practices for the C# language when we
explore dependency injection.

Questions
1.	 On which operating systems can you run .NET 5?

2.	 What is Windows Subsystem for Linux?

3.	 What is a self-contained .NET app?

4.	 When is a time where a cross-platform implementation (with .NET) could become
complicated?

Appendix 95

Appendix
Earlier in this chapter, we showed you how to install a Windows service on your
development machine. This approach was a simplified method that might not work for
environments outside your machine. So, here is a more advanced way of configuring an
app as a Windows service.

Installing your app as a Windows service – the
advanced method
For production use, it is likely that permissions are more fine-grained and locked down.
Perform the following steps instead to set up an app as a service:

1.	 Log on to the Windows server where you will deploy the service.

2.	 Open a PowerShell prompt, and run the following command: New-LocalUser
-Name dotnetworker.

3.	 You need to grant permissions to the service account you just created in order to
enable it to start the services. Follow these steps:

a. Open the Local Security Policy editor by running secpol.msc.

b. Expand the Local Policies node and select User Rights Assignment.

c. Open the Login as a service policy.

d. Select Add User or Group.

e. Provide the name of the service account (dotnetworker) using either of the
following approaches.

f. Type the user account ({DOMAIN OR COMPUTER NAME\USER}) in the object
name field and select OK to add the user to the policy.

g. Select Advanced. Select Find Now. Select the user account from the list. Select
OK. Select OK again to add the user to the policy.

h. Select OK or Apply to accept the changes.

4.	 Copy the files to the server, such as C:\dotnetworker\.

96 Cross-Platform Setup

5.	 Run the following PowerShell cmdlets:

$acl = Get-Acl "C:\dotnetworker"

$aclRuleArgs = dotnetworker, "Read,Write,ReadAndExecute",
"ContainerInherit,ObjectInherit", "None", "Allow"

$accessRule = New-Object System.Security.AccessControl.
FileSystemAccessRule($aclRuleArgs)

$acl.SetAccessRule($accessRule)

$acl | Set-Acl "C:\dotnetworker"

New-Service -Name DotnetWorker -BinaryPathName C:\
dotnetworker\dotnetworker.exe -Credential {SERVERNAME\
dotnetworker} -Description ".NET Worker Service"
-DisplayName ".NET Worker Service" -StartupType Automatic

Wait a couple of seconds, and it should have started.

3
Dependency

Injection
This chapter talks about Dependency Injection (DI) in the context of ASP.NET Core.
Moreover, this chapter will get you up to speed with the concept of DI, its capabilities, and
how it is used in ASP.NET Core applications. We will review the different types of DI by
following code examples so that you will be able to understand how and when to apply
them in situations where they may be required. We will also be looking at DI containers,
service lifetimes, and how to handle complex scenarios as you progress throughout the
chapter. By the end of this chapter, you'll be able to understand how DI works by following
some practical examples. You should then be able to apply the knowledge and skills that
you have learned to build real-world and powerful ASP.NET Core applications, and take
advantage of the benefits that DI has to offer.

Here is the list of topics that we will be covering in this chapter:

•	 Learning dependency injection in ASP.Net Core

•	 Reviewing types of dependency injection

•	 Understanding dependency injection containers

•	 Understanding dependency lifetimes

•	 Handling complex scenarios

98 Dependency Injection

Technical requirements
This chapter contains code snippets written in C# for demonstrating various scenarios.
Please verify that you have installed the required software and tools listed in Chapter 1,
Introduction to ASP.NET Core 5.

Check out the source code for this chapter at https://github.com/
PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/
Chapter%2003/Chapter_03_DI_Examples.

Before diving into this chapter, make sure that you read the first two chapters so that you
have a basic understanding of ASP.NET Core and C# in general, and how each of them
works together.

Please visit the following link to check the CiA videos: https://bit.ly/3qDiqYY

If you're ready, let's jump right into it.

Learning dependency injection in ASP.NET
Core
To give you a bit of a background, before .NET Core came into being, the only way to get
DI in your applications was through the use of third-party frameworks such as Autofac,
LightInject, Unity, and many others. The good news is that DI is now treated as a first-
class citizen in ASP.NET Core. This simply means that you don't need to do much to make
it work.

The built-in Microsoft DI container does have its limitations though. For example, the
default DI doesn't provide advanced capabilities, such as property injection decorators,
injections based on name, child containers, convention-based registration, and custom
lifetime management. So, if you find features that are not available in the default DI
container, then that's when you'll need to consider looking at some other third-party DI
frameworks mentioned earlier as an alternative. However, it is still recommended to use
the default DI framework for building ASP.NET Core applications that don't require you
to implement any specific features. This will lessen your application package dependencies
and make your code cleaner and more manageable without having to rely on third-party
frameworks. The .NET Core team did a pretty good job of providing us with the most
common features and you probably won't need anything else.

In this section, we'll do some hands-on coding for you to enable you to better understand
the advantages and benefits of DI. We'll start by looking at a common problem and then
apply DI to resolve the problem.

https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2003/Chapter_03_DI_Examples
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2003/Chapter_03_DI_Examples
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2003/Chapter_03_DI_Examples
https://bit.ly/3qDiqYY

Learning dependency injection in ASP.NET Core 99

Understanding what DI is
There is a plethora of information on the web that defines DI, but a simple definition is as
follows:

"Dependency injection is a design pattern that enables developers to write
loosely coupled code."

In other words, DI helps you to write clean and more maintainable code by solving
dependency problems. DI makes it easy to mock object dependencies for unit testing and
makes your application more flexible by swapping or replacing dependencies without
having to change the consuming classes. In fact, the core foundation of ASP.NET Core
frameworks relies heavily on DI, as shown in the following diagram:

Figure 3.1 – ASP.NET Core framework-provided services

All framework-provided services, such as Hosting, Configuration, ApplicationLifetime,
Logging, Routing, and many others use DI under the hood, and they are, by default,
registered to the DI container when the application web host is built.

The default DI in .NET Core sits under the Microsoft.Extensions.
DependencyInjection namespace, whose implementation is packed into a separate
NuGet package (you can learn more at https://www.nuget.org/packages/
Microsoft.Extensions.DependencyInjection/).

https://www.nuget.org/packages/Microsoft.Extensions.DependencyInjection/
https://www.nuget.org/packages/Microsoft.Extensions.DependencyInjection/

100 Dependency Injection

When you create an ASP.NET Core application from the default template, the application
references the Microsoft.AspNetCore.App NuGet package, as shown in the
following screenshot:

Figure 3.2 – Microsoft.AspNetCore.App NuGet package

This assembly provides a set of APIs, including the Microsoft.Extensions.
DependencyInjection assembly for building ASP.NET Core applications.

The ASP.NET team designed the DI framework separately so that you will still be able to
leverage its features outside ASP.NET Core applications. What this means is that you will
be able to use DI in event-driven cloud apps such as Azure Functions and AWS Lamda, or
even in console applications.

The use of DI mainly supports the implementation of the following two related concepts:

•	 Dependency Inversion Principle (DIP): This is a software design principle and
represents the "D" in the SOLID principles of object-oriented programming.
It provides a guideline for avoiding a dependency risk and solving common
dependency problems. However, this principle doesn't state any specific technique
for you to implement.

•	 Inversion of Control (IoC): This is a technique that follows the DIP guidelines.
This concept is the process of creating application components in a detached
state, preventing higher-level components from having direct access to lower-level
components, and allowing them to only interact via abstractions.

DI is an implementation technique that follows the concept of IoC. It enables you to access
lower-level components from a higher-level component through component injections.
DI follows two SOLID principles: DIP and the Single Responsibility Principle (SRP).
These concepts are crucial for creating well-designed and well-decoupled applications, and
you should consider applying them in any situation where required. Check out the Further
reading section at the end of this chapter to learn more about the SOLID principles.

You may have heard these terms and concepts and you still find them very confusing.
Well, here is an analogy that might help you better understand them.

Learning dependency injection in ASP.NET Core 101

Let's say you are making your own song and you wanted to upload it on the web so that
your friends can watch and hear it. You can think of the DIP as a way to record music.
It doesn't matter how you record the song. You could use a video recorder, a camera, a
smartphone, or a studio recorder. IoC is choosing how you would actually record your
music and polish it with the help of some tools. For example, you can use a combination
of audio and camera recorders to record your song. Typically, they are recorded as raw
files. You would then use an editor tool to filter and polish the raw files to come up with
a great output. Now, if you wanted to add some effects, text visualization, or graphics
background, then that's where DI comes into play. It allows you to inject whatever files
your file depends on to generate the output you expect. Keep in mind that in this analogy,
both IoC and DI rely on using the editor tool to generate the ultimate output (high-level
component) based on raw files (low-level component). In other words, both IoC and DI
refer to the same concept by using the editor tools to improve your video output.

To illustrate this, let's look at a brief example.

The common dependency problem
Consider we have the following page that displays a list of music in a typical MVC web
application:

Figure 3.3 – The music list page

102 Dependency Injection

Let's break down how we came up with the result shown in the previous screenshot. For
your quick reference, here's the class called MusicManager, which exposes a method for
obtaining the list of music:

using Chapter_03_QuickStart.Models;

using System.Collections.Generic;

namespace Chapter_03_QuickStart.DataManager

{

 public class MusicManager

 {

 public List<SongModel> GetAllMusic()

 {

 return new List<SongModel>

 {

 new SongModel { Id = 1, Title = "Interstate
 Love Song", Artist ="STP",
 Genre = "Hard Rock" },

 new SongModel { Id = 2, Title = "Man In The
 Box", Artist ="Alice In Chains",
 Genre = "Grunge" },

 new SongModel { Id = 3, Title = "Blind", Artist
 ="Lifehouse", Genre = "Alternative" },

 new SongModel { Id = 4, Title = "Hey Jude",
 Artist ="The Beatles", Genre = "Rock n Roll" }

 };

 }

 }

}

The preceding code is nothing but a plain class that contains a method,
GetAllMusic(). This method is responsible for returning all music entries from the
list. The implementation could vary depending on your data store, and you could be
pulling them from a database or via an API call. However, for this example, we just return
a static list of data for simplicity's sake.

Learning dependency injection in ASP.NET Core 103

The SongModel class lives inside the Models folder with the following structure:

namespace Chapter_03_QuickStart.Models

{

 public class SongModel

 {

 public int Id { get; set; }

 public string Title { get; set; }

 public string Artist { get; set; }

 public string Genre { get; set; }

 }

}

Nothing fancy. The preceding code is just a dumb class that houses some properties that
the View expects.

Without DI, we would normally call a method from a class directly into the Controller
class to render View, as shown in the following code block:

public IActionResult Index()

{

 MusicManager musicManager = new MusicManager();

 var songs = musicManager.GetAllMusic();

 return View(songs);

}

The Index() method in the preceding code will be invoked when you perform an HTTP
GET request. The method is responsible for rendering the data into the View. You can
see that it creates an instance of the MusicManager class by invoking the new operator.
This is known as a "dependency" because the Index() method is now dependent on the
MusicManager object for fetching the required data.

104 Dependency Injection

Here is a high-level graphical representation of what the code logic is doing:

Figure 3.4 – Tightly-coupled dependency

In the preceding diagram, the Controller box represents the higher-level component
where it refers to the concrete class implementation as a direct dependency, which
represents the lower-level component.

While the existing implementation works, this approach could result in making your code
difficult to manage because the object is tightly coupled to the method itself. Imagine you
have a bunch of methods that rely on the MusicManager object and when you rename
it or change its implementation in the future, you would be forced to update all your
methods that depend on that object, which could be harder to maintain and problematic
when it comes to unit testing your Controllers. Be aware that refactoring bad code
can be time-consuming and expensive, so it is better do it correctly from the outset.

Learning dependency injection in ASP.NET Core 105

The ideal approach for avoiding such a mess is to clean up our code and take advantage of
using interfaces and DI.

Making use of DI

To resolve the dependency problem that our HomeController had, we need to do a
little bit of code refactoring. Here's a graphical illustration of the goal that we are aiming
for:

Figure 3.5 – Loosely-coupled dependency

As you can see from the preceding diagram, we just need to create an interface to resolve
the dependency problem. This approach avoids the direct dependency to the lower-
level component and instead, it creates an abstraction that both components depend on.
This now makes the Controller class more testable and extensible, and makes the
application more maintainable.

106 Dependency Injection

Let's proceed and start creating an interface. There are two ways to create an interface:
Either you create it yourself or use the built-in refactoring features provided by Visual
Studio 2019. Since we already have an existing class that we wanted to extract as an
interface, using the refactoring feature makes a lot of sense. To do this, you need to
perform the following steps:

1.	 Just simply right-click on the MusicManager class and select Quick Actions and
Refactorings..., as shown:

Figure 3.6 – The built-in Quick Actions and Refactorings feature

2.	 Then, select Extract interface…:

Figure 3.7 – The built-in Extract interface feature

Learning dependency injection in ASP.NET Core 107

3.	 Now, you should be presented with a pop-up dialog to configure the interface, as
shown in the following screenshot:

Figure 3.8 – The Extract Interface pop-up window

4.	 You could change the default configuration if you like, but for this exercise, let's just
stick with the defaults and click on OK. Here's the generated code that is created
automatically by Visual Studio:

using Chapter_03_QuickStart.Models;

using System.Collections.Generic;

namespace Chapter_03_QuickStart.DataManager

{

 public interface IMusicManager

 {

 List<SongModel> GetAllMusic();

 }

}

108 Dependency Injection

The preceding code is just a simple interface with the GetAllMusic() method signature
that returns a type of List<SongModel>. We won't deep dive into the details of
interfaces in this book, but to give you a brief overview, a couple of benefits associated
with the interface are the fact that it provides abstraction to help reduce coupling in
our code and enables us to provide different implementations for the method without
affecting other classes.

Now, when you go back to the MusicManager class, you will see that the class has been
updated to inherit the interface:

public class MusicManager : IMusicManager

Neat! With just a few clicks, Visual Studio automatically sets up everything for us.
What's left for us to do here is to refactor the HomeController class to make use of
the interface and DI, and then register the interface mapping with the DI container. Let's
proceed and switch back to the HomeController class and update the code so that it
will look similar to this:

namespace Chapter_03_QuickStart.Controllers

{

 public class HomeController : Controller

 {

 private readonly IMusicManager _musicManager;

 public HomeController(IMusicManager musicManager)

 {

 _musicManager = musicManager;

 }

 public IActionResult Index()

 {

 var songs = _musicManager.GetAllMusic();

 return View(songs);

 }

 }

}

Learning dependency injection in ASP.NET Core 109

The preceding code first defines a private read-only field of the IMusicManager
interface type. Making it read-only and private is considered the best practice, as
this prevents you from accidentally assigning the field to a different value within your
class. The next line of code defines the constructor class and uses the "constructor
injection" approach to initialize the dependency object. In this case, any methods within
the HomeController class will be able to access the _musicManager field and invoke
all its available methods and properties. We'll talk more about the different types of DI
later in this chapter.

The current code now supports the DI pattern since we are no longer passing concrete
dependency to the Controller methods when the class is constructed. With the
interface abstraction, we no longer need to create a new instance of the concrete class
to directly reference the GetAllMusic() method. But instead, we reference the
interface field to access the method. In other words, our method is now loosely
coupled with the actual class implementation. This helps us to maintain our code more
easily and perform unit tests conveniently.

Registering the service
Finally, let's register the interface mapping with the DI container. Go ahead and
navigate to the Startup.cs file and then add the following code within the
ConfigureServices() method:

public void ConfigureServices(IServiceCollection services)

{

 services.AddTransient<IMusicManager, MusicManager>();

 //register other services here

}

The preceding code registers the IMusicManager interface as the service type and maps
the MusicManager concrete class as the implementation type in the DI container. This
tells the framework to resolve the required dependency that has been injected into the
HomeController class constructor at runtime. The beauty of DI is that it allows you
to change whatever component that you want for as long as it implements the interface.
What this means is that you can always replace the MucisManager class mapping to
something else for as long as it implements the IMusicManager interface without
impacting the HomeController implementation.

110 Dependency Injection

The ConfigureServices() method is responsible for defining the services
that the application uses, including platform features, such as Entity Framework
Core, authentication, your own service, or even third-party services. Initially, the
IServiceCollection interface provided to the ConfigureServices() method
has services defined by the framework, including Hosting, Configuration, and
Logging. We'll talk more about DI containers later in this chapter.

Benefits of DI
As you have learned from our previous example, DI entails many benefits that make
your ASP.NET Core application easy to maintain and evolve. These benefits include the
following:

•	 It promotes the loose coupling of components.

•	 It helps in separation of concerns.

•	 It promotes the logical abstractions of components.

•	 It facilitates unit testing.

•	 It promotes clean and more readable code, which makes code maintenance
manageable.

Having learned what DI is and discussed its benefits, we'll now move on to discuss its
types in the next section.

Reviewing types of dependency injection
There are a few options when it comes to implementing DI within your ASP.NET Core
applications, and these include the following approaches:

•	 Constructor injection

•	 Method injection

•	 Property injection

•	 View injection

Let's talk about each type in detail in the coming sections.

Reviewing types of dependency injection 111

Constructor injection
We've seen how we can implement constructor injection earlier in our music list
example. But to recap, this approach basically allows you to inject lower-level dependent
components into your class by passing them into the constructor class as arguments.

This approach is the most commonly used when building ASP.NET Core applications.
In fact, when you create an ASP.NET Core MVC project from the default template, you
will see that DI is, by default, integrated. You can verify this yourself by looking into the
HomeController class and you should see the ILogger interface being injected into
the class constructor, as shown in the following code:

public class HomeController : Controller

{

 private readonly ILogger<HomeController> _logger;

 public HomeController(ILogger<HomeController> logger)

 {

 _logger = logger;

 }

}

In the preceding code, notice that the concept is very much similar to our previous
example when we swapped out the MusicManager class reference with the
IMusicManager interface to perform DI.

The ILogger<HomeController> interface is registered by the logging abstraction's
infrastructure and is registered by default in the framework as a Singleton:

services.AddSingleton(typeof(ILogger<>), typeof(Logger<>));

The preceding code registers the service as a Singleton and uses the generic open
types technique. This allows the DI container to resolve dependencies without having to
explicitly register services with generic constructed types.

112 Dependency Injection

Method injection
Method injection is another DI approach that allows you to inject lower-level dependent
components as arguments into the method. In other words, dependent objects will be
passed into the method instead of passing them into the class constructor. Implementing
method injection is very helpful when various methods in your class need to invoke a
child object dependency to complete their job. A typical example is writing to different
log formats based on which methods are invoked. Let's take an actual example for you to
better understand this approach.

Let's extend our previous example about the music list, but this time, we are going to
implement something like a notifier to demonstrate method or function injection.

To start off, create a new interface called INotifier, as shown in the following code
block:

namespace Chapter_03_QuickStart.DataManager

{

 public interface INotifier

 {

 bool SendMessage(string message);

 }

}

In the preceding code, we have defined a simple interface that contains a single method
called SendMessage. The method accepts a string parameter that represents a
message, and returns a boolean type to determine whether the operation has succeeded
or failed. It is as simple as that.

Now, let's proceed by creating a concrete class that implements the INotifier interface.
Here's what the class declaration looks like:

namespace Chapter_03_QuickStart.DataManager

{

 public class Notifier : INotifier

 {

 public bool SendMessage(string message)

 {

 //some logic here to publish the message

 return true;

Reviewing types of dependency injection 113

 }

 }

}

The preceding code shows how the SendMessage() method is implemented. Notice
that there's really no logic implemented within the method other than returning the
boolean value of true. That was intentional because the implementation is irrelevant
to this topic, and we don't want to draw your attention to that area. However, in real
applications, you might create different classes to implement the logic for sending the
message. For example, you could use message queues, pub/sub, Event Bus, email, SMS, or
even a REST API call to broadcast the messages.

Now that we have our notifier object abstracted via an interface. Let's
modify the IMusicManager interface to include a new method called
GetAllMusicThenNotify. The updated IMusicManager.cs file should now look
like this:

using Chapter_03_QuickStart.Models;

using System.Collections.Generic;

namespace Chapter_03_QuickStart.DataManager

{

 public interface IMusicManager

 {

 List<SongModel> GetAllMusic();

 List<SongModel> GetAllMusicThenNotify(INotifier
 notifier);

 }

}

Notice that the GetAllMusicThenNotify() method also returns a List of
SongModel objects, but this time, we are passing the INotifier interface as an
argument.

Let's continue by implementing the GetAllMusicThenNotify() method within the
MusicManager class. Here's the code implementation of the method:

public List<SongModel> GetAllMusicThenNotify(INotifier
notifier)

{

 //invoke the notifier method

114 Dependency Injection

 var success = notifier.SendMessage("User viewed the music
 list page.");

 //return the response

 return success

 ? GetAllMusic()

 : Enumerable.Empty<SongModel>().ToList();

}

The preceding code invokes the SendMessage() method of the INotifier
interface and then passes the message as the parameter/argument. This process is
called method injection because we have injected the INotifier interface into the
GetAllMusicThenNotify() method, hence, without having to instantiate the
concrete implementation of the notifier object. Keep in mind that in this particular
example, the SendMessage() method will always return true just to simulate the
process and doesn't contain any actual implementation. This simply means that the value
of the success variable will always be true.

The second line in the preceding code returns the response and uses the C# ternary
conditional operator (?:) to evaluate what data the method should return based on
the expression value. The Ternary operator is the simplified syntax of the if-else
statement. In this case, we invoke the GetAllMusic() method to return the entire
list of music if the value of the success variable is true, otherwise we return an empty
list using the Enumerable.Empty<T> method. For more information about ternary
operators and the Enumerable.Empty LINQ extension method, refer to https://
docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.
empty.

Now, the final step to perform is to update the Index() action method in the
HomeController class to make use of the GetAllMusicThenNotify() method.
Here's the updated version of the method:

public IActionResult Index()

{

 var songs = _musicManager.GetAllMusicThenNotify(new
 Notifier());

 return View(songs);

}

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.empty
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.empty
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.empty

Reviewing types of dependency injection 115

Notice in the preceding code that we are now passing the concrete instance of the notifier
object. The GetAllMusicThenNotify() method will automatically resolve it because
the concrete instance implements the INotifier interface.

To better understand how the dots connect to the picture, here's a high-level graphical
representation of what we just did:

Figure 3.9 – Method injection

The important boxes in the preceding diagram are the Interface boxes. This is because
abstracting your implementation via the interface enables you to avoid direct class access,
and decouples various implementations in different classes. For example, if business
requirements arise and ask you to implement different forms of notification based on
different events, you could easily create SMSNotifier, MessageQueueNotifier, and
EmailNotifier that implement the INotifier interface. Then, perform whatever
logic it requires to fulfill the business needs separately. While you may still be able to
accomplish method injection without the use of an interface, chances are that it makes
your code messy and very difficult to manage. Without using an interface, you would end
up creating different methods for each of your notification classes, which leads you to
back to unit tests and code maintenance issues.

116 Dependency Injection

Property injection
Property injection (or setter injection) allows you to reference a lower-level dependent
component as a property in your class. You would only use this approach in case the
dependency is truly optional. In other words, your service can still work properly without
these dependencies provided.

Let's take another example using our existing music list sample. This time, we will update
the Notifier sample to use property injection instead of method injection. The first
thing that we need to do in order to make this happen is to update the IMusicManager
interface. Go ahead and replace the existing code so that it will look similar to this:

using Chapter_03_QuickStart.Models;

using System.Collections.Generic;

namespace Chapter_03_QuickStart.DataManager

{

 public interface IMusicManager

 {

 INotifier Notify { get; set; }

 List<SongModel> GetAllMusic();

 List<SongModel> GetAllMusicThenNotify();

 }

}

What we did in the preceding code is that we added a new property called Notify and
then modified the GetAllMusicThenNotify() method by removing the INotifier
parameter.

Next, let's update the MusicManager class to reflect the changes in the
IMusicManager interface. The updated class should now look like this:

using Chapter_03_QuickStart.Models;

using System.Collections.Generic;

using System.Linq;

namespace Chapter_03_QuickStart.DataManager

{

 public class MusicManager : IMusicManager

 {

 public INotifier Notify { get; set; };

Reviewing types of dependency injection 117

 public List<SongModel> GetAllMusic()

 {

 //removed code for brevity

 }

 public List<SongModel> GetAllMusicThenNotify()

 {

 // Check if the Notify property has been set

 if (Notify != default)

 {

 //invoke the notifier method

 Notify.SendMessage("User viewed the music list
 page.");

 }

 //return list of music

 return GetAllMusic();

 }

 }

}

In the preceding code, we've implemented the Notify property, which returns an
INotifier interface type using C#'s auto-implemented property feature. If you are
not familiar with auto-properties, it basically makes property declaration more concise
when no additional logic is required in the property accessors. What this means is that the
following line of code:

public INotifier Notify { get; set; }

118 Dependency Injection

Is simply equivalent to the following code:

private INotifier _notifier;

public INotifier Notify

{

 get { return _notifier };

 set { _notifier = value };

}

The preceding code can also be rewritten using Expression-Bodied Property Accessors,
which was introduced in C# 7.0:

private INotifier _notifier;

public INotifier Notify

{

 get => _notifier;

 set => _notifier = value;

}

You may use the preceding code when you need to set properties with different
implementations. However, in the case of our example, using auto-properties makes more
sense as it's cleaner.

Going back to our example, we need to implement the Notify property so that
the HomeController class would be able to set its value before invoking the
GetAllMusicThenNotify() method.

The GetAllMusicThenNotify() method is pretty much straightforward. First, it
checks whether the Notify property has been set or is not null. The default keyword
value of any reference type is null. In other words, validating against null or default
doesn't matter here. Without the null validation check, you will end up getting a
NullReferenceException error when the property is not set. So, it's a best practice
to always check for nulls. Now, if the Notify property is not null, we then invoke the
SendMessage() method. Finally, we return the list of music to the caller.

The final step that we need to modify is the Index() method of HomeController.
Here's what the updated code looks like:

public IActionResult Index()

{

 _musicManager.Notify = new Notifier();

Reviewing types of dependency injection 119

 var songs = _musicManager.GetAllMusicThenNotify();

 return View(songs);

}

The preceding code sets the Notify property with a new instance of the Notifier
class. It then invokes the GetAllMusicThenNotify() method and finally returns the
result to the View.

Here's a high-level graphical representation of what we just did:

Figure 3.10 – Property injection

The important thing to note in this approach is that even if we don't set the Notify
property, the Index() method will still work and returns the data to View. In summary,
you should only use property injection when integrating optional features in your code.

120 Dependency Injection

View injection
View injection is another DI approach supported by ASP.NET Core. This feature was
introduced in ASP.NET MVC 6, the first version of ASP.NET Core (previously known as
ASP.NET 5), using the @inject directive. The @inject directive allows you to inject
some method calls from a class or service directly into your View. This can be useful
for view-specific services, such as localization or data required only for populating view
elements.

Let's jump ahead with some examples. Now, add the following method within the
MusicManager class:

public async Task<int> GetMusicCount()

{

 return await Task.FromResult(GetAllMusic().Count);

}

The preceding code is an asynchronous method that returns a Task of int. While this
book does not cover C# asynchronous programming in depth, perhaps providing a little
bit of background about it is useful. The logic within the method simply returns the count
of items from the GetAllMusic() result. The value of Count is obtained using the
Count property of the List collection. Since the method expects a Task to be returned,
and the GetAllMusic() method returns a List type, then the result is wrapped
inside the Task.FromResult() call. It then uses the await operator to wait for the
async method to complete the task, and then asynchronously returns the result to the
caller when the process is complete. In other words, the await keyword is where things
can get asynchronous. The async keyword enables the await keyword in that method
and changes how method results are handled. In other words, the async keyword
only enables the await keyword. For more information about C#'s async and await
keywords, check out the reference links at the end of this chapter.

The next step that we need to perform in order for it to work is to register the
MusicManager class as a service in the ConfigureServices() method of the
Startup.cs file:

public void ConfigureServices(IServiceCollection services)

{

 services.AddTransient<MusicManager>();

 //register other services here

}

Reviewing types of dependency injection 121

In the preceding code, we have registered the service as Transient. This means that
every time the dependency is requested, a new instance of the service will be created. We'll
talk more about service lifetimes in the Understanding dependency lifetimes section of this
chapter.

Now, here's how you would inject the MusicManager class as a service in the View:

@inject Chapter_03_QuickStart.DataManager.MusicManager
MusicService

And here's the code for referencing the GetMusicCount() method that we added
earlier:

Total Songs: <h2>@await MusicService.GetMusicCount()</h2>

The @ symbol is a Razor implicit syntax that allows you to use C# code in the View. We'll
deep dive into Razor in the next chapter.

Here is a sample screenshot of the output after a service has been injected into the View:

Figure 3.11 – View injection output

122 Dependency Injection

Notice that the value of 4 has been printed on the page. That's the value returned from
the GetMusicCount() method. Keep in mind that while using this technique might
be useful, you should consider separating your View and Controller logic to value
the separation of concerns. In practice, it's recommended to generate the data from your
Controller; the View should not care how and where the data was processed.

Now that we've seen the different types of DI and learned when to use them, we'll move on
to discuss DI containers in the next section.

Understanding dependency injection
containers
The dependency injection container is not really a requirement to apply the DI
technique. However, using it can simplify the management of all of your dependencies,
including their lifetimes, as your application grows and becomes more complex.

.NET Core comes with a built-in DI/IoC container that simplifies DI management. In
fact, the default ASP.NET Core application template uses DI extensively. You can see it by
looking at the Startup class of your ASP.NET Core application:

public class Startup

{

 public IConfiguration Configuration { get; }

 public Startup(IConfiguration configuration)

 {

 	 Configuration = configuration;

 }

 public void ConfigureServices(IServiceCollection services)

 {

 // This method gets called by the runtime.

 // Use this method to add services to the container.

 }

 public void Configure(IApplicationBuilder app,

 IWebHostEnvironment env)

 {

 	 // This method gets called by the runtime.

Understanding dependency injection containers 123

	 // Use this method to configure the HTTP request

 // and middleware pipeline.

 }

}

In the preceding code, the IConfiguration interface has been passed to the Startup
class constructor using the constructor injection approach. This allows you to get access
to the configuration values defined in the appsettings.json file. You don't need
to register IConfiguration yourself as the framework takes care of this for you
when the Host is configured. You can see how this is being done by looking at the
CreateHostBuilder() method of the Program class:

public static IHostBuilder CreateHostBuilder(string[] args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 });

The CreateDefaultBuilder() method in the preceding code initializes
a new instance of the WebHostBuilder class with pre-configured defaults,
including Hosting, Configurations, and Logging. Ultimately, the
ConfigureWebHostDefaults() method adds everything else needed for a typical
ASP.NET Core application, such as configuring Kestrel and using the Startup class to
configure your DI container and middleware pipeline.

Keep in mind that you can only inject certain services into the Startup class
constructor, and these include IWebHostEnvironment, IhostEnvironment, and
IConfiguration.

124 Dependency Injection

Other services must be registered to the DI container when the application starts. This
process is done by adding services to IServiceCollection:

Figure 3.12 – The DI container

In .NET Core, the dependencies managed by the container are called services.
Any services that we expect to be injected into the container must be added to
IServiceCollection so that the service provider will be able to resolve the services
at runtime. Under the hood, the Microsoft built-in DI container implements the
IServiceProvider interface. It's really not ideal to build your own IoC/DI container
framework, but if you do, the IServiceProvider interface is what you should look at.

IServiceCollection has two main types of services:

•	 Framework-provided services: These represent the purple boxes from the
preceding diagram, which are part of the .NET Core framework and registered
by default. These services include Hosting, Configuration, Logging,
HttpContext, and many others.

•	 Application services: These represent the white boxes. This type of services refers
to the services that you create and use in your ASP.NET Core application that is
not part of the framework itself. Since these services are typically created by you,
then you need to manually register them in the DI container so that they will be
resolved when the application starts. An example of this type of service is our
IMusicManager interface sample.

Understanding dependency injection containers 125

The DI container manages the instantiation and configuration of the services registered.
Typically, this process is executed in three steps:

1.	 Registration: The services that you want to be injected into different areas of your
application need to be registered first so that the DI container framework will know
which implementation type to map the service to. A great example of this is when
we mapped the IMusicManager interface to the concrete class implementation
called MusicManager. Generally, service registrations are configured in the
ConfigureServices() method of the Startup.cs file, as in the following
code:

public void ConfigureServices(IServiceCollection
services)

{

 services.AddTransient<IMusicManager, MusicManager>();

}

2.	 Resolution: This is where the DI container automatically resolves the dependency
when the application starts by creating an object instance and injecting it into the
class. Based on our previous example, this is where we inject the IMusicManager
interface into the HomeController class constructor using the constructor
injection approach, as shown in the following code:

private readonly IMusicManager _musicManager;

public HomeController(IMusicManager musicManager)

{

 _musicManager = musicManager;

}

3.	 Disposition: When registering services, the DI container framework also needs
to know the lifetime of the dependencies so it can manage them correctly.
Based on our previous example regarding the constructor injection approach,
this is where we register the interface mapping as a Transient service in the
ConfigureServices() method of the Startup.cs file.

For more information about the ASP.NET Core fundamentals and how the default
Microsoft DI container works under the hood, refer to the official documentation here:
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/
dependency-injection.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection

126 Dependency Injection

Now that we've understood how the DI works, let's move on to the next section to talk
about service lifetimes.

Understanding dependency lifetimes
If you're completely new to ASP.NET Core, or haven't worked with ASP.NET Core
for a long time, or if you're an experienced ASP.NET developer but don't really look
into dependency lifetimes in detail, the chances are you might be using just one type
of dependency lifetime to register all your services when building ASP.NET Core
applications. This is because you are confused as to which service lifetime to use, and you
wanted to play it safe. Well, that's understandable, because choosing which type of service
lifetime to use can be confusing sometimes. Hopefully, this section will give you a better
understanding of the different types of lifetimes that you can use within your application
and decide when to use each option.

There are primarily three service lifetimes in ASP.NET Core DI:

•	 Transient

•	 Scoped

•	 Singleton

Transient service
The AddTransient() method is probably what you were using most often. If that is
the case, then that's a good call because this type is the safest option to use when in doubt.
Transient services are created each time they are requested. In other words, if you register
your service with a transient lifetime, you will get a new object whenever you invoke it as
a dependency, regardless of whether it is a new request or the same. This lifetime works
best for lightweight and stateless services as they are disposed at the end of the request.

Let's take a look at an example for you to better understand how transient service lifetime
works. We'll use the existing music list example for ease of reference. The first thing we
need to do is add the following property to the IMusicManager interface:

Guid RequestId { get; set; }

The preceding code is just a simple property that returns a Globally Unique Identifier
(GUID). We'll use this property to determine how each dependency behaves.

Understanding dependency lifetimes 127

Now, let's implement the RequestId property in the MusicManager class by adding
the following code to the existing code:

public Guid RequestId { get; set; }

public MusicManager(): this(Guid.NewGuid()) {}

public MusicManager(Guid requestId)

{

 RequestId = requestId;

}

In the preceding code, we've implemented the RequestId property from the
IMusicManager interface and then defined two new constructors. The first constructor
sets a new GUID value, and the second constructor initializes the GUID value to the
RequestId property by applying the constructor injection approach. Without the first
constructor, the DI container won't be able to resolve the dependency that we've
configured in the HomeController class when the application starts.

To demonstrate multiple dependency references, let's create a new class called
InstrumentalMusicManager and then copy the following code:

using System;

namespace Chapter_03_QuickStart.DataManager

{

 public class InstrumentalMusicManager

 {

 private readonly IMusicManager _musicManager;

 public Guid RequestId { get; set; }

 public InstrumentalMusicManager(IMusicManager
 musicManager)

 {

 RequestId = musicManager.RequestId;

 }

128 Dependency Injection

 }

}

In the preceding code, we've also applied the Constructor Injection
approach by injecting the IMusicManager interface as an object dependency
into the class. We then initialized the value of the RequestId property, just
like what we did in the MusicManager class. The only differences between the
InstrumentalMusicManager and MusicManager classes are the following:

1.	 The InstrumentalMusicManager class doesn't implement the
IMusicManager interface. This was intentional because we are only interested in
the RequestId property and to make this demo as simple as possible.

2.	 The InstrumentalMusicManager class doesn't have a setter constructor.
The reason for this is that we will let the MusicManager class set the value. By
injecting the IMusicManager interface into the constructor, we will be able to
reference the value of the RequestId property from it since the MusicManager
class implements this interface, although the value of the property will vary
depending on how the service is registered with the type of lifetime, which we will
see in action later.

Now, navigate to the Startup class and update the ConfigureServices() method
so that it will look similar to the following code:

public void ConfigureServices(IServiceCollection services)

{

 services.AddTransient<IMusicManager, MusicManager>();

 services.AddTransient<InstrumentalMusicManager>();

 // Removed for brevity. Register other services here

}

In the preceding code, we've registered both services as transient services. Notice that we
opted out of the second parameter of the AddTransient() method. This is because the
InstrumentalMusicManager class doesn't implement any interface.

Understanding dependency lifetimes 129

The final step that we need to perform is to update the HomeController class to inject
the InstrumentalMusicManager concrete class as a dependency and reference both
RequestId values from each service that we have registered earlier. Here's what the
HomeController class code looks like:

public class HomeController : Controller

{

 private readonly IMusicManager _musicManager;

 private readonly InstrumentalMusicManager _insMusicManager;

 public HomeController(IMusicManager musicManager,

 InstrumentalMusicManager
 insMusicManager)

 {

 _musicManager = musicManager;

 _insMusicManager = insMusicManager;

 }

 public IActionResult Index()

 {

 var musicManagerReqId = _musicManager.RequestId;

 var insMusicManagerReqId = _insMusicManager.RequestId;

 _musicManager.Notify = new Notifier();

 var songs = _musicManager.GetAllMusicThenNotify();

 return View(songs);

 }

}

In the preceding code, we injected an instance of the InstrumentalMusicManager
class and IMusicManager interface as a dependency using the Constructor
Injection approach. We then get each RequestId value from both object instances.

130 Dependency Injection

Now, when you run the application and set a break point at the Index()
method, we should see the different values for the musicManagerReqId and
insMusicManagerReqId variables, as shown in the following screenshot:

Figure 3.13 – The RequestId value from the IMusicManager interface instance

In the preceding screenshot, we can see that the musicManagerReqId variable holds
the GUID value of b50f0518-8649-47cb-9f22-59d3394d59a7. Let's take a look at
the value of insMusicManagerReqId in the following screenshot:

Figure 3.14 – The RequestId value from the InstrumentalMusicManager class instance

As you can see, each variable has different values, even if the RequestId has only been
set in the MusicManager class implementation. This is how the Transient services
work, and the DI container framework creates a new instance for every dependency each
time they are requested. This ensures the uniqueness of each dependent object instance for
every request. While this service lifetime has its own benefits, be aware that using this type
of lifetime can potentially impact the performance of your application, especially if you
are working on a huge monolith app where dependency reference is massive and complex.

Scoped service
Scoped service lifetimes are services created at the lifetime of each client request. In other
words, an instance is created per web request. A common example of using a Scoped
lifetime is when using an Object Relational Mapper (ORM) such as Microsoft's Entity
Framework Core (EF). By default, the DbContext in EF will be created once per client
web request. This is to ensure that related calls to process the data will be contained in
the same object instance for each request. Let's take a look at how this approach works by
modifying our existing previous example.

Understanding dependency lifetimes 131

Let's go ahead and update the ConfigureServices() method of the Startup class
so that it will look similar to the following code:

public void ConfigureServices(IServiceCollection services)

{

 services.AddScoped<IMusicManager, MusicManager>();

 services.AddTransient<InstrumentalMusicManager>();

}

All that we actually changed in the preceding code is just the MusicManager class
registration being added as a scoped service. The InstrumentalMusicManager
interface remains transient because this class depends on the MusicManager class,
which implemented the IMusicManager interface. This means that the DI container
will automatically apply whatever service lifetime is being used in the main component.

Now, when you run the application again, you should see that both the
musicManagerReqId and insMusicManagerReqId variables now hold the same
RequestId value, as shown in the following screenshot:

Figure 3.15 – The RequestId value from the IMusicManager interface instance

In the preceding screenshot, we can see that the musicManagerReqId variable holds
the GUID value of 50b6b498-f09d-4640-b5dc-c06d9e3c2cd1. The value of the
insMusicManagerReqId variable is shown in the following screenshot:

Figure 3.16 – The RequestId value from the InstrumentalMusicManager interface instance

Notice in the preceding screenshot that both musicManagerReqId and
insMusicManagerReqId now have the same value. This is how Scoped services
work; the values will remain the same throughout the entire client request.

132 Dependency Injection

Singleton service
Singleton service lifetimes are services created only once and all dependencies will share
the same instance of the same object during the entire lifetime of the application. You
would use this type of lifetime for services that are expensive to instantiate because objects
will be stored in memory and can be reused for all injections within your application.
A typical example of a singleton service is ILogger. The ILogger<T> instances for
a certain type, T, are kept around for as long as the application is running. What this
means is that when injecting an ILogger<HomeController> instance into your
Controller, the same logger instance will be passed to it every time.

Let's take a look at another example to better understand this type of service lifetime.
Let's update the ConfigureServices() method in the Startup class and add
MusicManager as a singleton service, just as in the following code:

public void ConfigureServices(IServiceCollection services)

{

 services.AddSingleton<IMusicManager, MusicManager>();

 services.AddTransient<InstrumentalMusicManager>();

}

The AddSingleton() method in the preceding code enables the service to be created
only once. When we run the application again, we should be able to see that both the
musicManagerReqId and insMusicManagerReqId variables now hold the same
RequestId value, as shown in the following screenshots:

Figure 3.17 – The RequestId value from the IMusicManager interface instance

In the preceding screenshot, we can see that the musicManagerReqId variable holds
the GUID value of 6fd5c68a-6dba-4bac-becc-5fc92c91b4b0. Now, let's take a
look at the value of the insMusicManagerReqId variable in the following screenshot:

Understanding dependency lifetimes 133

Figure 3.18 – The RequestId value from the InstrumentalMusicManager interface instance

As you notice in the preceding screenshot, the value of each variable is also the same.
The only difference to this approach compared with Scoped services is that no matter
how many times you make a request to the Index() action method, you should still be
getting the same value. You can verify this by refreshing the page to simulate multiple
HTTP requests. In the web context, this means that every subsequent request will use
the same object instance as it was first created. This also means that it spans across web
requests, so regardless of which users made the request, they will still be getting the same
instance.

Keep in mind that since singleton instances are kept in memory during the entire
application's lifetime, you should watch out for your application memory usage. The good
thing though is that the memory will be allocated just once, so the garbage collector will
have less to do and may provide you with some performance gain. However, I would
recommend that you only use a singleton when it makes sense and don't make things
a singleton because you think it's going to save on performance. Moreover, don't mix a
singleton service with other service lifetime types, such as transient or scoped, because it
may affect how complex scenarios your application behaves.

For more advance and complex scenarios, visit the official documentation relating to DI
in ASP.NET Core at https://docs.microsoft.com/en-us/aspnet/core/
fundamentals/dependency-injection.

Learning and understanding how each service lifetime works is very important in order
for your application to behave correctly. Now, let's take a quick look at how we can
manage services for handling complex scenarios in the next section.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection

134 Dependency Injection

Handling complex scenarios
If you've made it this far, then we can assume that you now have a better understanding of
how the DI works and how you could implement them in different scenarios as required.
In this section, we are going to look at some complex situations that you might face when
writing your applications. We will see how we can apply the available options provided by
the default DI containers to solve complex scenarios. Finally, we are going to look at how
we can improve the organization of services when registering them in the DI container

Service descriptors
It's important to understand what service descriptors are before we dive into various
complex scenarios.

Service descriptors contain information about the registered services that have
been registered in the DI container, including the type of service, implementation,
and lifetime. These are used internally by both IServiceCollection and
IServiceProvider. It's very uncommon for us to work directly against service
descriptors since they are typically created automatically by the various extension methods
of IServiceCollection. However, situations may arise that may require you to work
directly with service descriptors.

Let's take a look at some examples to make sense of this. In our previous example,
we've registered the IMusicManager interface mapping as a service using the
AddSingleton() generic extension method:

services.AddSingleton<IMusicManager, MusicManager>();

Using the generic extension method in the preceding code is very convenient to use when
registering our services in the DI container. However, there may be scenarios where you
would want to add services manually using service descriptors. Let's see how we can
achieve this by looking at some examples.

There are four possible ways to create service descriptors. The first one is to use the
ServiceDescriptor object itself, and pass the required arguments in the constructor,
as shown in the following code snippet:

var serviceDescriptor = new ServiceDescriptor

(

 typeof(IMusicManager),

 typeof(MusicManager),

 ServiceLifetime.Singleton

);

Handling complex scenarios 135

services.Add(serviceDescriptor);

In the preceding code, we've passed IMusicManager in the first argument as the service
type. We then set the corresponding implementation type as MusicManager and finally,
set the service lifetime to a singleton. The ServiceDescriptor object has another
two overload constructors that you can use. You can read more about them at https://
docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.
dependencyinjection.servicedescriptor.

The second option is to use the static Describe() method of the
ServiceDescriptor object, as shown in the following code snippet:

var serviceDescriptor = ServiceDescriptor.Describe

(

 typeof(IMusicManager),

 typeof(MusicManager),

 ServiceLifetime.Singleton

);

services.Add(serviceDescriptor);

In the preceding code, we are passing the same arguments to the method, which is
pretty much the same as what we did earlier using the ServiceDescriptor object
constructor option. You can read more about the Describe() method and its available
overload methods at https://docs.microsoft.com/en-us/dotnet/api/
microsoft.extensions.dependencyinjection.servicedescriptor.
describe.

You may have noticed that both options in the preceding examples require us to pass the
service lifetime. In this case, we are forced to pass the ServiceLifetime.Singleton
enum value. To simplify them, we can use the available static methods to create service
descriptors with lifetimes.

The following code demonstrates the remaining options:

var serviceDescriptor = ServiceDescriptor.Singleton

(

 typeof(IMusicManager),

 typeof(MusicManager)

);

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor.describe
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor.describe
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor.describe

136 Dependency Injection

services.Add(serviceDescriptor);

The preceding code makes use of the Singleton() static method by simply passing
both the service type and the corresponding implementation type. While the code seems
much cleaner now, you can simplify the creation further by using the generic method to
make your code more concise, as shown in the following code snippet:

var serviceDescriptor = ServiceDescriptor

.Singleton<IMusicManager,MusicManager>();

services.Add(serviceDescriptor);

Add versus TryAdd
We've learned how to create service descriptors in the previous example. In this section,
let's take a look at the various ways in which we can register them in the DI container.

Earlier in this chapter, we've seen how to use the generic Add extension methods, such
as the AddTransient, AddScoped, and AddSingleton methods for registering a
service in the DI container with a specified lifetime. Each of these methods has various
overloads that accept different arguments based on your needs. However, as your
application becomes more complex and you have a lot of services to deal with, using these
generic methods can potentially cause your application to behave differently when you
accidentally register the same type of service.

For example, register the following service multiple times:

services.AddSingleton<IMusicManager, MusicManager>();

services.AddSingleton<IMusicManager, AwesomeMusicManager>();

The preceding code registers two services that refer to the IMusicManager interface.
The first registration maps to the MusicManager concrete class implementation, and the
second one maps to the AwesomeMusicManager class.

If you run the application, you will see that the implementation type being injected into
the HomeController class is the AwesomeMusicManager class, as shown in the
following screenshot:

Handling complex scenarios 137

Figure 3.19 – The HomeController class constructor injection

This simply means that the DI container will use the last registered entry for situations
where you register multiple services of the same type. Therefore, the order of service
registrations in the ConfigureServices() method can be quite important. To avoid
this kind of situation, we can use the various TryAdd() generic extension methods that
are available for registering the service.

So, if you want to register multiple implementations of the same service, you can simply
do something like this:

services.AddSingleton<IMusicManager, MusicManager>();

services.TryAddSingleton<IMusicManager, AwesomeMusicManager>();

In the preceding code, we've changed the second registration to make use of the
TryAddSingleton() method. When you run the application again, you should now
see that the MusicManager class implementation is the one that gets injected as shown
in the following figure:

Figure 3.20 – The HomeController class constructor injection

When using TryAdd() methods, the DI container will only register services when
there is no implementation already defined for a given service type. This makes things
convenient for you, especially when you have complicated applications, because you can
express your intent more clearly when registering your service and it prevents you from
accidentally replacing previously registered services. So, if you want to register your
services safely, then consider using the TryAdd() method instead.

138 Dependency Injection

Dealing with multiple service implementations
Previously, we've seen the effect of using the Add() methods for registering multiple
services of the same service type with the DI container. While the DI container uses the
last implementation type defined for the same service type, you should know that the first
service defined is still kept in the service collections entry. In other words, invoking the
Add() method multiple times for the same interface will create multiple entries in the
service collection. This means that the last registration in our previous example does not
replace the first registration.

To utilize the multiple implementations of the same interface, then you must first
change how you define your services with having the same service type. This is to avoid
potential side effects when having duplicate instances of the implementation. Therefore,
when registering multiple instances of an interface, it's recommended to use the
TryAddEnumerable() extension method, just as in the following example:

services.TryAddEnumerable(ServiceDescriptor

 .Singleton<IMusicManager,
 MusicManager>());

services.TryAddEnumerable(ServiceDescriptor

 .Singleton<IMusicManager,
 AwesomeMusicManager>());

In the preceding code, we've replaced the AddSingleton() and
TryAddSingleton() calls to the TryAddEnumerable() method. The
TryAddEnumerable() method accepts a ServiceDescriptor argument
type. This method prevents duplicate registrations of the same implementation. For
more information, see https://docs.microsoft.com/en-us/dotnet/
api/microsoft.extensions.dependencyinjection.extensions.
servicecollectiondescriptorextensions.tryaddenumerable.

Now, the next step is to modify the HomeController class and contain the
dependencies in an IEnumerable generic collection type to allow all implementations
to be evaluated and resolved.

Here's an example of how to do that using our previous example:

private readonly IEnumerable<IMusicManager> _musicManagers;

public HomeController(IEnumerable<IMusicManager> musicManagers)

{

 _musicManagers = musicManagers;

}

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddenumerable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddenumerable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddenumerable

Handling complex scenarios 139

In the preceding code, we've changed the HomeController constructor argument to
accept an IEnumerable<IMusicManager> service type. When the DI container
is resolving services for this class, it will now attempt to resolve all instances of
IMusicManager and inject them as an IEnumerable, as shown in the following
screenshot:

Figure 3.21 – Resolving all instances of IMusicManager

Keep in mind that the DI container will only resolve multiple instances of service
implementations when the type is IEnumerable.

Replacing and removing service registrations
In this section, we'll take a look at how we can replace and remove service registrations.
To replace a service registration, you can use the Replace() extension method of the
IServiceCollection interface, as shown:

services.AddSingleton<IMusicManager, MusicManager>();

services.Replace(ServiceDescriptor

 .Singleton<IMusicManager,
 AwesomeMusicManager>());

The Replace() method also accepts a ServiceDescriptor argument type. This
method will look for the first service registration for the IMusicManager service type
and then remove it if it finds one. The new implementation type will then be used to create
a new registration in the DI container. In this case, the MusicManager implementation
type will be replaced with the AwesomeMusicManager class implementation. One thing
to keep in mind here is that the Replace() method will only support removing the first
service type entry in the collection.

140 Dependency Injection

In situations where you would need to remove all prior service registrations of a service
type, you can use the RemoveAll() extension method and pass the type of the service
that you wish to remove. Here's an example:

services.AddSingleton<IMusicManager, MusicManager>();

services.AddSingleton<IMusicManager, AwesomeMusicManager>();

services.RemoveAll<IMusicManager>();

The preceding code removes both registrations of the IMusicManager service type in
the service collection.

Replacing or removing services in the DI container is quite a rare scenario, but it may be
useful if you want to provide your own implementation for the framework or other third-
party services.

Summary
DI is a huge topic, but we've tackled most of the major topics that should help you as a
beginner as you progress on your journey to learning ASP.NET Core.

We've covered the concepts of DI, how it works under the hood, and its basic usage in the
context of ASP.NET Core. These concepts are crucial for creating well-designed and well-
decoupled applications. We've learned that DI offers a few benefits that help us to build
robust and powerful applications. By following some detailed examples, we've learned
how we can effectively use DI to solve potential problems in a variety of scenarios.

DI is a very powerful technique for building highly extensible and maintainable
applications. By taking advantage of the abstractions, we can easily swap out dependencies
without affecting the behavior of your code. This gives you greater flexibility in terms of
integrating new features easily, and makes your code more testable, which is also crucial
for building well-crafted applications. While the DI container is not really a requirement
to apply the DI pattern, using it can simplify the management of all of your dependencies,
including their lifetimes, as your application grows and becomes more complex.

In the next chapter, we are going to explore Razor View Engines for building powerful
ASP.NET Core web applications. We will do some hands-on coding by building the
application from scratch so that you have a better understanding of the topics as you
progress.

Questions 141

Questions
1.	 What are the types of DI?

2.	 When should dependency lifetimes be used?

3.	 What's the difference between the Add and TryAdd extension methods?

Further reading
Prerequisites:

•	 Understanding the basic fundamentals of ASP.NET Core: https://docs.
microsoft.com/en-us/aspnet/core/fundamentals

•	 Understanding the SOLID principles: https://en.wikipedia.org/wiki/
SOLID

•	 Understanding the basic fundamentals of DI in ASP.NET Core: https://docs.
microsoft.com/en-us/aspnet/core/fundamentals/dependency-
injection

•	 Understanding view injections in MVC: https://docs.microsoft.com/
en-us/aspnet/core/mvc/views/dependency-injection

Basic:

•	 C# guide to open and closed types: https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/language-specification/
types#open-and-closed-types

•	 C# guide to constructed types: https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/language-specification/
types#constructed-types

•	 Understanding the LINQ enumerable empty: https://docs.microsoft.
com/en-us/dotnet/api/system.linq.enumerable.empty

•	 Understanding the C# ternary conditional operator: https://docs.
microsoft.com/en-us/dotnet/csharp/language-reference/
operators/conditional-operator

•	 Understanding C# auto-implemented properties: https://docs.microsoft.
com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/auto-implemented-properties

https://docs.microsoft.com/en-us/aspnet/core/fundamentals
https://docs.microsoft.com/en-us/aspnet/core/fundamentals
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/dependency-injection
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#open-and-closed-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#open-and-closed-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#open-and-closed-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#constructed-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#constructed-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#constructed-types
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.empty
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.empty
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/conditional-operator
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/conditional-operator
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/conditional-operator
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/auto-implemented-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/auto-implemented-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/auto-implemented-properties

142 Dependency Injection

Advanced:

•	 Understanding service descriptors: https://docs.microsoft.com/en-us/
dotnet/api/microsoft.extensions.dependencyinjection.
servicedescriptor

•	 Understanding the TryAddEnumerable method: https://
docs.microsoft.com/en-us/dotnet/api/microsoft.
extensions.dependencyinjection.extensions.
servicecollectiondescriptorextensions.tryaddenumerable

•	 Understanding async and await in C#: https://docs.microsoft.com/
en-us/dotnet/csharp/language-reference/operators/await

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicedescriptor
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddenumerable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddenumerable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddenumerable
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.extensions.servicecollectiondescriptorextensions.tryaddenumerable
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/await
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/await

4
Razor View Engine

Building dynamic and data-driven web applications is pretty easy; however, things can
sometimes be confusing, especially if you are new to the technology. As a beginner, you
might find yourself having a hard time understanding how the stateless nature of the web
works. The main reason for this is either you have never been exposed to how to apply the
framework or simply because you are completely new to web development and you have
no idea where to begin.

Even though there are many tutorials that you can use as a reference to learn, you may
still find it hard to connect pieces, which could result in you losing interest. The good
news is that ASP.NET Core makes things easier for you to learn how to carry out web
development. As long as you understand C#, basic HTML, and CSS, you should be able to
learn web development in no time. If you are new, confused, and have no idea how to start
building an ASP.NET Core application, then this chapter is for you.

144 Razor View Engine

This chapter is mainly targeted at beginner to intermediate .NET developers who want to
jump into ASP.NET Core 5, get a feel of the different web frameworks, and get their hands
dirty with coding examples.

As you may know, there are lots of technologies that you can choose to integrate certain
capabilities with ASP.NET Core, as shown in Figure 4.1.:

Figure 4.1 – ASP.NET Core technology stacks

In the preceding diagram, you can see that ASP.NET Core provides most of the common
capabilities that you can integrate with your application. This gives you the flexibility to
choose whatever framework and services you want to use when building your application.
In fact, you can even combine any of these frameworks to produce powerful applications.
Bear in mind though that we won’t be covering all the technologies shown in the
preceding diagram in this chapter.

Technical requirements 145

In this chapter, we will mainly be focusing on the Web Apps stack by looking at a couple
of web framework flavors that you can choose for building web applications in ASP.
NET Core. We’ll cover the basics of MVC and Razor Pages by doing some hands-on
coding exercises so that you get a feel of how each of them works and understand their
differences.

Here is a list of the main topics that we’ll go through in this chapter:

•	 Understanding the Razor view engine

•	 Learning the basics of Razor syntax

•	 Building a to-do application with MVC

•	 Building a to-do application with Razor Pages

•	 Differences between MVC and Razor Pages

By the end of this chapter, you should understand the fundamentals of the Razor view
engine and its syntax and know how to build a basic, interactive, data-driven web
application using two of the popular web frameworks that ship with ASP.NET Core. You
should then be able to weigh in on their pros and cons and decide which web framework
is best suited for you. Finally, you’ll understand when to use each web framework when
building real-world ASP.NET Core applications.

Technical requirements
This chapter uses Visual Studio 2019 to demonstrate various examples, but the process
should be the same if you’re using Visual Studio Code.

Check out the source code for this chapter at https://github.com/
PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/
Chapter%2004/Chapter_04_RazorViewEngine_Examples.

Before diving into this chapter, make sure that you have a basic understanding of ASP.
NET Core and C# in general and how each of them works separately, as well as together.
Though it’s not required, having a basic knowledge of HTML and CSS is helpful for you to
easily understand how the pages are constructed.

Please visit the following link to check the CiA videos: https://bit.ly/3qDiqYY

If you’re ready, let’s jump right into it.

https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2004/Chapter_04_RazorViewEngine_Examples
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2004/Chapter_04_RazorViewEngine_Examples
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2004/Chapter_04_RazorViewEngine_Examples
https://bit.ly/3qDiqYY

146 Razor View Engine

Understanding the Razor view engine
Before we deep dive into the Razor view engine in the context of ASP.NET Core, let’s talk
a bit about the history of the various view engines in ASP.NET.

The previous versions of the ASP.NET frameworks had their own view/markup engines
for rendering dynamic web pages. Back in the old days, Active Server Pages (Classic
ASP) used a .ASP file extension. ASP.NET Web Forms, which is commonly known as
the Web Forms view engine, used a .ASPX file extension. These file types were markup
engines that contained server-side code, such as VBScript, VB.NET, or C#, which were
processed by the web server (IIS) to output HTML in the browser. A few years later, after
ASP.NET Web Forms became popular, Microsoft introduced ASP.NET MVC 1.0 as a
new, alternative web framework for building dynamic web applications in the full .NET
Framework. Bringing MVC into .NET opened it up to a wider audience of developers,
because it values the clean separation of concerns and friendly URL routings, allows
deeper extensibility, and follows real web development experience.

While the early versions of MVC addressed most of the Web Forms downsides, they still
used the .ASPX-based markup engine to serve up pages. Many were not glad about the
integration of the .ASPX markup engine in MVC, because as it was too complex to work
with the UI. It could potentially affect the overall performance of the application due to its
processing overhead. When Microsoft released ASP.NET MVC 3.0 in early January 2011,
the Razor view engine came to life as a new view engine addition to power ASP.NET
MVC views. The Razor view engine in the ASP.NET full .NET Framework supports both
VB.NET (.vbhtml) and C# (.cshtml) as the server-side language.

When ASP.NET Core was introduced, a lot of things were changed for the better. Since
the framework was redesigned to be modular, unified, and cross-platform, many features
and capabilities from the full .NET framework were discontinued, such as Web Forms and
VB.NET support. Because of these changes, the Razor view engine also dropped support
for the .vbhtml file extension, leaving it to only support C# code.

Now that you have a little bit of background about the various view engines in the
different ASP.NET web frameworks, let’s move on to the next section. There, you will
better understand why the ASP.NET team came to the decision to use the Razor view
engine as the default markup engine to power all ASP.NET Core web frameworks.

Understanding the Razor view engine 147

Reviewing the Razor view engine
As the ASP.NET Core framework has evolved, the ASP.NET Core team has been working
hard to provide a better view engine that offers a lot of benefits and productivity. The new
Razor view engine is the default view engine for all ASP.NET Core web frameworks, and
it has been optimized to provide us with faster HTML generation using a code-focused
templating approach.

The Razor view engine, often referred to as Razor, is a C#-based template markup syntax
for generating HTML with dynamic content. It’s the view engine that powers not just
the ASP.NET Core MVC, but all other ASP.NET Core web frameworks for generating
dynamic pages (as shown in Figure 4.2).

Figure 4.2 – Razor view engine

In the preceding diagram, we can see that the Blazor, Razor Pages, and MVC web
frameworks rely on Razor view engines to generate content pages and components. Blazor
differs a bit from MVC and Razor Pages because it a single-page application (SPA) web
framework that uses a component-based approach. Blazor components are files that use
the .razor extension, which still uses the Razor engine under the hood. Content pages,
often referred to as the UI, are simply Razor files with the .cshtml extension. Razor
files are mainly composed of the HTML and Razor syntax, which enables you to embed
C# code in the content itself. So, if you request a page, the C# code gets executed on the
server. It then processes whatever logic it requires, takes data from somewhere, and then
returns the generated data, along with the HTML that makes up the page, to the browser.

Having the ability to use the same templating syntax for building up your UI enables
you to easily transition from one web framework to another without much of a learning
curve. In fact, you can combine any of the web frameworks for building web applications.
However, it’s not recommended to do so, as things can get messy and it may cause your
application code to be difficult to maintain. One exception, though is if you are migrating
your whole application from one web framework to another, and you want to start
replacing portions of your application to use other web frameworks; then, it makes a lot of
sense to combine them.

148 Razor View Engine

Razor offers a lot of benefits, including the following:

•	 Easy to learn: As long as you know basic HTML and a little bit of C#, then learning
Razor is quite easy and fun. Razor was designed to enable C# developers to take
advantage of their skills and boost productivity when building UIs for their ASP.
NET Core applications.

•	 Clean and fluid: Razor was designed to be compact and simple and does not
require you to write a lot of code. Unlike other view templating engines, where you
need to specify certain areas within your HTML to denote a server-side code block,
the Razor engine is smart enough to detect server code in your HTML, which
enables you to write clean and more manageable code.

•	 Editor-agnostic: Razor isn’t tied to a specific editor like Visual Studio. This enables
you to write code in whatever text editor you prefer to improve productivity.

•	 IntelliSense support: While you can write Razor-based code in any text editor,
using Visual Studio can boost your productivity even more because of the statement
completion support built into it.

•	 Ease of unit testing: Razor-based pages/views support unit tests.

Understanding how the Razor view engine works is very important when building
dynamic and interactive pages in ASP.NET Core. In the next section, we’ll discuss some of
the basic syntaxes of Razor.

Learning the basics of Razor syntax
The beauty of Razor, compared to other templating view engines, is that it minimizes the
code required when constructing your views or content pages. This enables a clean, fast,
and fluid coding workflow to boost your productivity when composing UIs.

To embed C# code into your Razor files (.cshtml), you need to tell the engine that you
are injecting a server-side code block by using the @ symbol. Typically, your C# code
block must appear within the @{…} expression. This means that as soon as you type @, the
engine is smart enough to know that you are starting to write C# code. Everything that
follows after the opening { symbol is assumed to be server-side code, until it reaches the
matching closing block } symbol.

Let’s take a look at some examples for you to better understand the Razor syntax basics.

Learning the basics of Razor syntax 149

Rendering simple data
In a typical ASP.NET Core MVC web application generated from the default template,
you’ll see the following code within the Index.cshtml file for the home page:

@{

 ViewData[“Title”] = “Home Page”;

}

The preceding code is referred to as a Razor code block. Razor code blocks normally start
with the @ symbol and are enclosed by curly braces {}. In the preceding example, you’ll
see that the line starts with the @ symbol, which tells the Razor engine that you are about
to embed some server code. The code within the open and close curly braces are assumed
to be C# code. The code within the block will be evaluated and executed from the server,
allowing you to access the value and reference it in your view. This example is the same as
setting a variable in the Controller class.

Here’s another example of creating a new ViewData variable and assigning a value to it
in the Index() method of the HomeController class, as shown in the following code
block:

public IActionResult Index()

{

 ViewData[“Message”] = “Razor is Awesome!”;

 return View();

}

In the preceding example, we’ve set the ViewData[“Message”] value to “Razor is
Awesome!”. ViewData is nothing but a dictionary of objects, and it is accessible by
using string as the key. Now, let’s try to display the values of each ViewData object by
adding the following code:

<h1>@ViewData[“Title”]</h1>

<h2>@ViewData[“Message”]</h2>

The preceding code is an example of implicit Razor expressions. These expressions
normally start with the @ symbol and are then followed by C# code. Unlike Razor code
blocks, Razor expression code is rendered into the browser.

150 Razor View Engine

In the preceding code, we’ve referenced the values of both ViewData[“Title”] and
ViewData[“Message”], then contained them within the <h1> and <h2> HTML tags.
The value of any variable is rendered along with the HTML. Figure 4.3 shows you the
sample output of what we just did.

Figure 4.3 – Implicit Razor expression output

In the preceding screenshot, we can see that each value from ViewData is printed on the
page. This is what Razor is all about; it enables you to mix HTML with server-side code
using a simplified syntax.

The Razor implicit expressions described in the previous example typically should not
contain spaces, with the exception of using the C# await keyword:

<p>@await SomeService.GetSomethingAsync()</p>

The await keyword in the preceding code denotes an asynchronous call to the server
by invoking the GetSomethingAsync() method of the SomeService class. Razor
allows you to inject a server-side method into your content page using view injection. For
more information about dependency injection, you can review Chapter 3, Dependency
Injection.

Learning the basics of Razor syntax 151

Implicit expressions also do not allow you to use C# generics, as in the following code:

<p>@SomeGenericMethod<T>()</p>

The reason why the preceding code won’t work and will throw an error is that data type
T within the <> brackets is parsed as an HTML tag. To use generics in Razor, you would
need to use a Razor code block or explicit expressions, just like in the following code:

<p>@(SomeGenericMethod<T>())</p>

Razor explicit expressions start with the @ symbol with balanced matching parentheses.
Here’s an example of an explicit expression that displays the date from yesterday:

<p>@((DateTime.Now - TimeSpan.FromDays(1)).	 	 	 	
 ToShortDateString())</p>

The preceding code gets yesterday’s date and uses the ToShortDateString()
extension method to convert the value into a short date format. Razor will process the
code within the @() expression and render the result to the page.

Razor will ignore any content containing the @ symbol in between text. For example, the
following line remains untouched by Razor parsing:

user@email.com

Explicit expressions are useful for string concatenation as well. For example, if you want to
combine static text with dynamic data and render it, you can do something like this:

<p>Time@(DateTime.Now.Hour) AM</p>

The preceding code will render something like <p>Time@10 AM</p>. Without using
the explicit @() expression, the code will render as <p>Time@DateTime.Now.Hour
AM</p> instead. Razor will evaluate it as plain text like an email address.

If you want to display static content that includes an @ symbol before the text, then you
can simply append another @ symbol to escape it. For example, if we want to display the
text @vmsdurano on the page, then you can simply do something such as the following:

<p>@@vmsdurano</p>

Now that you’ve learned how the basic syntax of Razor works, let’s move on to the next
section and take a look at some advanced examples.

152 Razor View Engine

Rendering data from a view model
In most cases, you would typically be dealing with real data to present dynamic content
on a page when working with a real application. This data would normally come from
ViewModel, which holds some information related to the content that you are interested
in.

In this section, we’ll see how we can present data that comes from the server on your page
using the Razor syntax. Let’s start off by creating the following class in the Models folder
of your MVC application:

public class BeerModel

{

 public int Id { get; set; }

 public string Name { get; set; }

 public string Type { get; set; }

}

The preceding code is just a plain class that represents ViewModel. In this case,
ViewModel is called BeerModel, which houses some properties that the view expects.
Next, we’ll create a new class that will populate the view model. The new class would look
something like this:

public class Beer

{

 public List<BeerModel> GetAllBeer()

 {

 return new List<BeerModel>

 {

 new BeerModel { Id =1, Name=”Redhorse”, 	 	 	
 Type=”Lager” },

 new BeerModel { Id =2, Name=”Furious”, Type=”IPA” 	
 },

 new BeerModel { Id =3, Name=”Guinness”, 	 	 	
 Type=”Stout” },

 new BeerModel { Id =4, Name=”Sierra”, Type=”Ale” },

 new BeerModel { Id =5, Name=”Stella”, 	 	 	
 Type=”Pilsner” },

 };

 }

}

Learning the basics of Razor syntax 153

The preceding code is nothing but a plain class that represents the model. This class
contains a GetAllBeer() method, which is responsible for returning all items from the
list. In this case, we are returning a List<BeerModel> type. The implementation could
vary depending on your datastore and what data access framework you’re using. You
could be pulling the data from a database or via an API call. However, for this example, we
will just return a static list of data for simplicity’s sake.

You can think of ViewModel as a placeholder to hold properties that are only required
for your views. Model, on the other hand, is a class that implements the domain logic for
your application. Often, these classes are retrieved and store data in databases. We’ll talk
more about these concepts later in this chapter.

Now that we already modeled some sample data, let’s modify our Index() method of the
HomeController class so that it looks something like this:

public IActionResult Index()

{

 var beer = new Beer();

 var listOfBeers = beer.GetAllBeer();

 return View(listOfBeers);

}

The preceding code initializes an instance of the Beer class and then invokes the
GetAllBeer() method. We then set the result to a variable called listOfBeers and
then pass it to the view as an argument to return the response.

Now, let’s see how we can display the result on the page. Go ahead and switch back to the
Index.cshtml file that is located in the Views/Home folder.

The first thing that we need to do for us to access the data from the view model is to
declare a class reference using the @model directive:

@model IEnumerable<Chapter_04_LearningRazorSyntax.Models. 	 	
 BeerModel>

The preceding code declares a reference to the view model as a type of
IEnumerable<BeerMode>, which makes the view a strongly typed view. The @model
directive is one of the Razor reserved keywords. This particular directive enables you
to specify the type of class to be passed in the view or page. Razor directives are also
expressed as implicit expressions by using the @ symbol, followed by the directive name or
Razor reserved keywords.

154 Razor View Engine

At this point, we now have access to the view model that we created earlier. Since we
are declaring the view model as enumerable, you can easily iterate to each item in the
collection and present the data however you want. Here’s an example of displaying just the
Name property of the BeerModel class:

<h1>My favorite beers are:</h1>

 @foreach (var item in Model)

 {

 @item.Name

 }

In the preceding code, we’ve used the HTML tag to present the data in a bulleted
list format. Within the tag, you should notice that we’ve used the @ symbol to start
manipulating the data in C# code. The foreach keyword is one of the C# reserved
keywords, which are used for iterating data in a collection. Within the foreach block,
we have constructed the items to be displayed in the tag. In this case, the Name
property is rendered using implicit expressions.

Notice how fluid and easy it is to embed C# logic into the HTML. The way it works is that
Razor will look for any HTML tags within the expression. If it sees one, it jumps out of the
C# code and will only jump back in when it sees a matching closing tag.

Here’s the output when rendered in the browser:

Figure 4.4 – Implicit Razor expression output

Learning the basics of Razor syntax 155

The preceding is just an example of how we can easily display a formatted list of data on a
page. If you want to filter the list based on some condition, you can do something like this:

 @foreach (var item in Model)

 {

 if (item.Id == 2)

 {

 @item.Name

 }

 }

In the preceding code, we’ve used the C# if-statement within the foreach loop to
filter only the item that we need. In this case, we checked to see whether the Id property is
equal to 2 and then constructed an element to display the value when the condition
is met.

There are many ways to present information on the page depending on your requirements.
In most cases, you may be required to present a complex UI to display information. In
such cases, that’s where HTML and tag helpers can be useful.

Introduction to HTML helpers and tag helpers
Before tag helpers were introduced, HTML helpers were used to render dynamic HTML
content in Razor files. Typically, you will find code that looks similar to this in the view of
MVC applications:

<h1>List of beers:</h1>

<table class=”table”>

 <thead>

 <tr>

 <th>

 @Html.DisplayNameFor(model => model.Id)

 </th>

 @* Removed other headers for brevity *@

 </tr>

 </thead>

 <tbody>

 @foreach (var item in Model)

156 Razor View Engine

 {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.Id)

 </td>

 @* Removed other rows for brevity *@

 </tr>

 }

 </tbody>

</table>

The preceding code uses a <table> tag to present data in a tabular form. In the
<thead> section, we’ve used the DisplayNameFor HTML helper to display each
property name from the view model. We then iterated to each item within the <tbody>
section using the C# foreach iterator. This is pretty much the same as what we did in
our previous example. The difference now is we’ve constructed the data to be presented in
tabular format.

The <tr> element represents the rows and the <td> element represents the columns.
In each column, we’ve used the DisplayFor HTML helper to display the actual data
in the browser. Keep in mind though that the DisplayFor helper doesn’t generate any
HTML tags when rendered; instead, it will just display the value in plain text. So, use
DisplayFor only when there’s a reason for you to use it. Ideally, the foreach block
from the preceding code can be replaced with this code:

<tbody>

 @foreach (var item in Model)

 {

 <tr>

 <td>@item.Id</td>

 @* Removed other rows for brevity *@

 </tr>

 }

</tbody>

The preceding code is much cleaner and will render much faster, compared to using the
DisplayFor HTML helper. Running the code should result an output like Figure 4.5.

Learning the basics of Razor syntax 157

Figure 4.5 – HTML helpers output

While other HTML helpers are useful when dealing with collections, complex objects,
templates, and other situations, there are certain cases where things can become
cumbersome, especially when dealing with UI customization. For example, if we want
to apply some CSS style to elements that were generated by HTML helpers, then we will
have to use the overload method to do that without any IntelliSense help. Here’s a quick
example:

<h1>My most favorite beer:</h1>

@{ var first = Model.FirstOrDefault(); }

@* Removed other line for brevity *@

@Html.LabelFor(model => first.Name, new
{ @class = “font-weight-bold” })

: @first.Name

@* Removed other line for brevity *@

158 Razor View Engine

The preceding code uses the LabelFor HTML helper to display information. In this
example, we were only displaying the first item set from the ViewModel collection
using the LINQ FirstOrDefault extension method. The second argument in the
LabelFor method represents the htmlAttributes parameter, where we are forced
to pass an anonymous object just to set the CSS class. In this case, we applied the CSS
class attribute to font-weight-bold for the label element. The reason for this is that
the class keyword is a reserved keyword in C#, thus we need to tell Razor to evaluate
@class=expression as an element attribute by using the @ symbol before it. This
kind of situation makes it a little bit harder to maintain and not quite friendly to read as
your page gets bigger, especially to frontend developers who are not familiar with C#. To
address this, we can use tag helpers.

ASP.NET Core offers a bunch of built-in tag helpers that you can use to help improve
your productivity when creating and rendering HTML elements in the Razor markup.
Unlike HTML helpers, which are invoked as C# methods, tag helpers are attached
directly to HTML elements. This makes tag helpers much more friendly and fun to use for
frontend developers because they can have full control over HTML.

While tag helpers is a huge topic to cover, we’ll try to look at a common example for you
to understand their purpose and benefits.

Going back to our previous example, we can rewrite the code using tag helpers with the
following code:

<h1>My most favorite beer:</h1>

@* Removed other line for brevity *@

<label asp-for=”@first.Name” class=”font-weight-bold”></label>

: @first.Name

@* Removed other line for brevity *@

In the preceding code, notice that we have now used a standard <label> HTML tag and
used the asp-for tag helper to display the Name property from ViewModel. Note that
the closing tag is required. If you use a self-closing tag, such as <label asp-for=”@
first.Id” />, the value will not be rendered.

In cases where you want to change the property name to be rendered in the HTML, you
can use the [Display] attribute. For example, if we want to display the value Beer Id
for the property ID, we can simply do something like the following code:

Display(Name = “Beer Id”)]

public int Id { get; set; }

Building a to-do application with MVC 159

What we did in the preceding code is called data annotation. This enables you to define
certain metadata that you want to apply for properties in the model/view model, such as
conditions, validations, custom formatting, and so on. For more information about data
annotation, see https://docs.microsoft.com/en-us/dotnet/api/system.
componentmodel.dataannotations.

Figure 4.6 displays the sample output when running the code.

Figure 4.6 – Tag helpers output

There are many things that you can do with tag helpers. ASP.NET Core provides most of
the tag helpers that are common for building up your pages, such as form actions, input
controls, routings, validations, components, scripts, and many others. In fact, you can
even create your own or extend tag helpers to customize your needs.

Tag helpers give you a lot of flexibility when generating HTML elements, provide rich
IntelliSense support, and provide an HTML-friendly development experience, which
helps you save some development time when building UIs.

For more information about tag helpers in ASP.NET Core, see https://docs.
microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers.

Learning the basic fundamentals of the Razor view engine and understanding how the
syntax works are crucial for building any ASP.NET Core web applications. In the following
sections, we will do some hands-on exercises by building a to-do application in various
web frameworks. This is to give you a better understanding of how each web framework
works and help you decide which approach to choose when building real-world web
applications.

Building a to-do application with MVC
A to-do application is a great example to demonstrate how to perform adding and
modifying information on a web page. Understanding how this works in the stateless
nature of the web is of great value when building real-world, data-driven web applications.

Before we get started, let’s take a quick refresher on MVC first so that you have a better
understanding of what it is.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers

160 Razor View Engine

Understanding the MVC pattern
To better understand the MVC pattern approach, Figure 4.7 illustrates an attempt that
describes the high-level process in a graphical way:

Figure 4.7 – The MVC request and response flow

The preceding diagram is pretty much self-explanatory by just looking at the request flow.
But to verify your understanding, it might be helpful to give a brief explanation of the
process. The term MVC represents the three components that make up the application:
M for Models, V for Views, and C for Controllers. In the preceding diagram, you can
see that the controller is the very first entry that is invoked when a user requests a page in
the browser. Controllers are responsible for handling any user interactions and requests,
processing any logic that is required to fulfill the request, and ultimately, returning a
response to the user. In other words, controllers orchestrate the flow of logic.

Models are components that actually implement domain-specific logic. Often, models
contain entity objects, your business logic, and data access code that retrieves and stores
data. Bear in mind though that in real applications, you should consider separating
your business logic and data access layer to value the separation of concerns and single
responsibility. ViewModel is simply a class that houses some properties that are only
needed for the view. ViewModel is optional because you can technically return a model
to a view directly. In fact, it is not part of the MVC term. However, it’s worth including it
in the flow because it is very useful and recommended when building real applications.
Adding this extra layer enables you to expose only the data that you need instead of
returning all data from your entity object via models. Finally, views are components that
make up your UI or page. Typically, views are just Razor files (.cshtml) that contain
HTML, CSS, JavaScript, and C#-embedded code.

Building a to-do application with MVC 161

Now that you have an idea of how MVC works, let’s start building a web application from
scratch to apply these concepts and get a feel of the framework.

Creating an MVC application
Let’s go ahead and fire up Visual Studio 2019, and then select the Create a new project
box, as shown Figure 4.8.

Figure 4.8 – Creating a new project

162 Razor View Engine

The Create a new project dialog should show up. In the dialog, select Web as the project
type, and then find the ASP.NET Core Web Application project template, as shown in in
Figure 4.9.

Figure 4.9 – Creating a new ASP.NET Core web app

To continue, double-click the ASP.NET Core Web Application template or simply click
the Next button. The Configure your new project dialog should show up, as shown in
Figure 4.10.

Building a to-do application with MVC 163

Figure 4.10 – Configuring the new project

The preceding dialog allows you to configure your project name and the location path to
where you would want the project to be created. In a real application, you should consider
giving a meaningful name to your project that clearly suggests what the project is all
about. In this example, we’ll just name the project as ToDo.MVC. Now, click Create and it
should bring up the dialog shown in Figure 4.11.

Figure 4.11 – Creating a new MVC project

164 Razor View Engine

The preceding dialog allows you to choose what type of web framework you want to
create. For this example, just select Web Application (Model-View-Controller) and
then click Create to let Visual Studio generate the necessary files for you. The default files
generated should look something like Figure 4.12.

Figure 4.12 – Default MVC project structure

Building a to-do application with MVC 165

The preceding screenshot shows the default structure of the MVC application. You will
notice that the template automatically generates the Models, Views, and Controllers
folders. The names of each folder don’t really matter in order for the application to
function, but it’s recommended and good practice to name the folders that way to
conform with the MVC pattern. In MVC applications, functionalities are grouped into
functions. This means that each folder that represents MVC will contain its own dedicated
logical functions. Models contains data and validation; Views contains UI-related
elements for displaying data, and Controllers contains actions that handle any user
interactions.

If you already know the significant changes of the ASP.NET Core project structure, then
you can skip this part, but if you are new to ASP.NET Core, then it’s worth covering a few
of the core files generated so that you have a better understanding of their purpose. Here’s
the anatomy of the core files aside from the MVC folders:

•	 Connected Services: Allows you to connect to services such as Application
Insights, Azure Storage, mobile, and other ASP.NET Core services that your
application depends on, without you having to manually configure their connection
and configurations.

•	 Dependencies: This is where project dependencies are located, such as NuGet
packages, external assemblies, the SDK, and framework dependencies needed for
the application.

•	 Properties: This folder contains the launchSettings.json file, where you
can define application variables and profiles for running the app.

•	 wwwroot: This folder contains all your static files, which will be served directly to
the clients, including HTML, CSS, images, and JavaScript files.

•	 appsettings.json: This is where you configure application-specific settings.
Keep in mind though that sensitive data should not be added to this file. You should
consider storing secrets and sensitive information in a vault or secrets manager.

•	 Program.cs: This file is the main entry point for the application. This is where
you build the host for your application. By default, the ASP.NET Core app builds a
generic host that encapsulates all framework services needed to run the application.

•	 Startup.cs: This file is the heart of any .NET application. This is where you
configure the services and dependencies required for your application.

166 Razor View Engine

Running the app for the first time
Let’s try to build and run the default generated template to ensure that everything is
working. Go ahead and press the Ctrl + F5 keyboard keys or simply click the play button
located on the Visual Studio menu toolbar, as shown in Figure 4.13.

Figure 4.13 – Running the application

In the preceding screenshot, you will see that the default template automatically configures
two web server profiles for running the app in localhost from inside Visual Studio:
IIS Express and ToDo.MVC. The default profile used is IIS Express and the ToDo.MVC
profile runs on the Kestrel web server. You can see how this was configured by looking at
the launchSettings.json file. For more information about configuring ASP.NET
Core environments, see https://docs.microsoft.com/en-us/aspnet/core/
fundamentals/environments.

Visual Studio will compile, build, and automatically apply whatever configuration you’ve
set up for each profile in the application. If everything builds successfully, then you should
be presented with the output shown in Figure 4.14.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments

Building a to-do application with MVC 167

Figure 4.14 – First run output

Cool! Now, let’s move on to the next step.

Configuring in-memory databases
One of the great features of ASP.NET Core is that it allows you to create a database in
memory. This enables you to easily create a data-driven app without the need to spin up
a real server for storing your data. With that said, we are going to take advantage of this
feature in concert with Entity Framework (EF) Core so that we can play around with the
data and dispose of it when no longer needed.

Working with a real database will be covered in Chapter 7, APIs and Data Access, as it
mainly focuses on APIs and data access. For now, let’s just use an in-memory working
database for the sole purpose of this demo application.

Installing EF Core
The first thing we need to do is to add the Microsoft.EntityFrameworkCore
and Microsoft.EntityFrameworkCore.InMemory NuGet packages as project
references, so that we will be able to use EF as our data access mechanism to query data
against the in-memory datastore. To do this, navigate to the Visual Studio menu, then go
to Tools | NuGet Package Manager | Package Manager Console. In the console window,
install each package by running the following commands:

Install-Package Microsoft.EntityFrameworkCore -Version 5.0.0

Install-Package Microsoft.EntityFrameworkCore.InMemory -Version
5.0.0

168 Razor View Engine

Each command in the preceding code will pull all the required dependencies needed for
the application.

Note
The latest official version of Microsoft.EntityFrameworkCore as of
the time of writing is 5.0.0. Future versions may change and could impact
the sample code demonstrated in this chapter. So, make sure to always check
for any breaking changes when deciding to upgrade to newer versions.

Another way to install NuGet dependencies in your project is using the Manage NuGet
Packages for Solution… option, or by simply right-clicking on the Dependencies folder
of the project and then selecting the Manage NuGet Packages… option. Both options
provide a UI where you can easily search for and manage your project dependencies.

After successfully installing both packages, make sure to check your project
Dependencies folder and verify whether they were added, just like in Figure 4.15.

Figure 4.15 – NuGet package dependencies

Now that we have EF Core in place, let’s move on to the next step.

Creating a view model
Next, we need to create a model that will contain some properties needed for our to-do
page. Let’s go ahead and create a new class called Todo in the Models folder and then
copy the following code:

namespace ToDo.MVC.Models

{

 public class Todo

 {

 public int Id { get; set; }

 public string TaskName { get; set; }

Building a to-do application with MVC 169

 public bool IsComplete { get; set; }

 }

}

The preceding code is nothing more than a plain class that houses some properties.

Defining DbContext
EF Core requires DbContext for us to query the datastore. This is typically done by
creating a class that inherits from the DbContext class. Now, let’s add another class to
the Models folder. Name the class TodoDbContext and then copy the following code:

using Microsoft.EntityFrameworkCore;

namespace ToDo.MVC.Models

{

 public class TodoDbContext: DbContext

 {

 public TodoDbContext(DbContextOptions<TodoDbContext> 	
 options)

 : base(options) { }

 public DbSet<Todo> Todos { get; set; }

 }

}

The preceding code defines DbContext and a single entity that exposes Model as
DbSet. DbContext requires an instance of DbContextOptions. We can then
override the OnConfiguring() method to implement our own code, or just pass
DbContextOptions to the DbContext base constructor, as we’ve done in the
preceding code.

Seeding test data in memory
Now, since we don’t have an actual database for us to pull some data, we need to create a
helper function that will initialize some data when the application starts. Let’s go ahead
and create a new class called TodoDbSeeder in the Models folder, and then copy the
following code:

public class TodoDbSeeder

{

 public static void Seed(IServiceProvider serviceProvider)

 {

170 Razor View Engine

 using var context = new TodoDbContext(serviceProvider.	
 GetRequiredService<DbContextOptions<TodoDbContext>>());

 // Look for any todos.

 if (context.Todos.Any())

 {

 //if we get here then the data already seeded

 return;

 }

 context.Todos.AddRange(

 new Todo

 {

 Id = 1,

 TaskName = “Work on book chapter”,

 IsComplete = false

 },

 new Todo

 {

 Id = 2,

 TaskName = “Create video content”,

 IsComplete = false

 }

);

 context.SaveChanges();

 }

}

The preceding code looked for the TodoDbContext service from
IServiceCollection and created an instance of it. The method is responsible for
generating a couple of test Todo items on application startup. This is done by adding the
data to the Todos entity of TodoDbContext.

At this point, we now have DbContext that enables us to access our Todo items and a
helper class that will generate some data. What we need to do next is to wire them into the
Startup.cs and Program.cs files to get our data populated.

Building a to-do application with MVC 171

Modifying the Startup class
Let’s update the ConfigureServices() method of the Startup class to the
following code:

public void ConfigureServices(IServiceCollection services)

{

 services.AddDbContext<TodoDbContext>(options => options.	
 UseInMemoryDatabase(“Todos”));

 services.AddControllersWithViews();

}

The preceding code registers TodoDbContext into IServiceCollection and
defines an in-memory database called Todos. We need to do this so that we can reference
an instance of DbContext in the Controller class or anywhere in our code within the
application via dependency injection.

Now, let’s move on to the next step by invoking the seeder helper function to generate the
test data.

Modifying the Program class
Update the Main() method of the Program.cs file so that it looks similar to the
following code:

public static void Main(string[] args)

{

 var host = CreateHostBuilder(args).Build();

 using (var scope = host.Services.CreateScope())

 {

 var services = scope.ServiceProvider;

 TodoDbSeeder.Seed(services);

 }

 host.Run();

}

The preceding code creates a scope within the Host lifetime and looks for a service
provider that is available from Host. Finally, we invoke the Seed() method of the
TodoDbSeeder class and pass the service provider as an argument to the method.

At this point, our test data should be loaded into our memory “database” when the
application starts and is ready for use in our application.

172 Razor View Engine

Creating the to-do controller
Now, let’s create a new Controller class for our Todo page. Go ahead and navigate
to the Controllers folder and create a new MVC Controller-Empty class called
TodoController. Replace the default-generated code so that it looks similar to the
following code:

public class TodoController : Controller

{

 private readonly TodoDbContext _dbContext;

 public TodoController(TodoDbContext dbContext)

 {

 _dbContext = dbContext;

 }

 [HttpGet]

 public IActionResult Index()

 {

 var todos = _dbContext.Todos.ToList();

 return View(todos);

 }

}

The preceding code first defines a private and read-only field of TodoDbContext.
The next line of code defines the constructor class and uses the constructor injection
approach to initialize the dependency object. In this case, any methods within the
TodoController class will be able to access the instance of TodoDbContext and can
invoke all its available methods and properties. For more information about dependency
injection, review Chapter 3, Dependency Injection.

The Index() method is responsible for returning all Todo items from our in-memory
datastore to the view. You can see that the method has been decorated with the
[HttpGet] attribute, which signifies that the method can only be invoked in an HTTP
GET request.

Now, that we have TodoController configured, let’s move on to the next step and
create the view for displaying all items on the page.

Building a to-do application with MVC 173

Creating a view
Before creating a view, make sure to build your application first to verify any compilation
errors. After a successful build, right-click on the Index() method and then select Add
View…. In the window dialog, select Razor View and it should bring up the dialog shown
in Figure 4.16.

Figure 4.16 – Adding a new view

In the preceding dialog, select List for Template and select Todo (ToDo.MVC.Models)
for Model class. Finally, click Add to generate the views (as shown in Figure 4.17).

Figure 4.17 – The generated views

174 Razor View Engine

In the preceding screenshot, notice that the scaffolding engine automatically creates the
views in a way that conforms to the MVC pattern. In this case, the Index.cshtml file
was created under the Todo folder.

Note
You are free to manually add view files if you’d like. However, using the
scaffolding template is much more convenient to generate simple views that
match your controller action methods.

Now that we have wired our model, controllers, and views together, let’s run the
application to see the result.

Running the to-do app
Press the Ctrl + F5 keys to launch the application in the browser, and then append /todo
to the URL. You should be redirected to the to-do page and be presented with the output
shown in Figure 4.18.

Figure 4.18 – The to-do list page

Building a to-do application with MVC 175

Notice in the preceding screenshot that the test data that we configured earlier has been
displayed and the scaffolding template automatically constructs the HTML markup based
on ViewModel. This is very convenient and definitely saves you some development time
when creating simple pages in your application.

To know how the MVC routing works and how it was configured, just navigate to the
Startup class. You should find the following code within the Configure() method:

app.UseEndpoints(endpoints =>

{

 endpoints.MapControllerRoute(

 name: “default”,

 pattern: “{controller=Home}/{action=Index}/{id?}”);

});

The preceding code configures a default routing pattern for your application using the
UseEndpoints() middleware. The default pattern sets a value of Home as the default
controller, Index as the default Action value, and id as the optional parameter holder
for any routes. In other words, the /home/index path is the default route when the
application starts. The MVC pattern follows this routing convention to route URL paths
into Controller actions. So, if you want to configure custom routing rules for your
application, then this is the middleware that you should look at. For more information
about ASP.NET Core routing, see https://docs.microsoft.com/en-us/
aspnet/core/fundamentals/routing.

At this point, we can confirm that our to-do page is up and running with test data.
Now, let’s take a look at how to extend the application by implementing some basic
functionalities, such as adding, editing, and deleting items.

Implementing add item functionality
Let’s modify our TodoController class and add the following code snippet for the add
new item functionality:

[HttpGet]

public IActionResult Create()

{

 return View();

}

[HttpPost]

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing

176 Razor View Engine

public IActionResult Create(Todo todo)

{

 var todoId = _dbContext.Todos.Select(x => x.Id).Max() + 1;

 todo.Id = todoId;

 _dbContext.Todos.Add(todo);

 _dbContext.SaveChanges();

 return RedirectToAction(“Index”);

}

As you will notice in the preceding code, there are two methods with the same name.
The first Create() method is responsible for returning the view when a user requests
the page. We will create this view in the next step. The second Create() method is an
overload method that accepts a Todo view model as an argument, which is responsible
for creating a new entry in our in-memory database. You can see that this method has
been decorated with the [HttpPost] attribute, which signifies that the method can be
invoked only for POST requests. Keep in mind that we are generating an ID manually by
incrementing the existing maximum ID from our datastore. In real applications where you
use a real database, you may not need to do this as you can let the database auto-generate
the ID for you.

Now, let’s create the corresponding view of the Create() method. To create a new view,
just follow the same steps as we did for the Index() method, but this time select Create
as the scaffolding template. This process should generate a Razor file called Create.
cshtml in the View/Todo folder.

If you look at the generated view, the Id property of the Todo view model has been
generated as well. This is normal as the scaffolding template will generate a Razor view
based on the view model/model provided. We don’t want the Id property to be included
in the view as we are generating it in the code. So, remove the following HTML markup
from the view:

<div class=”form-group”>

 <label asp-for=”Id” class=”control-label”></label>

 <input asp-for=”Id” class=”form-control” />

</div>

Building a to-do application with MVC 177

Now, run the application again and navigate to /todo/create, and you should be
presented with a page that looks similar to Figure 4.19.

Figure 4.19 – The to-do Add page

178 Razor View Engine

Now, type the value Write Tech Blog in the TaskName textbox and tick the
IsComplete checkbox. Clicking the Create button should add a new entry to our
in-memory database and redirect you to the Index page, as shown in Figure 4.20.

Figure 4.20 – The to-do list page

Sweet! To add more items, you can click the Create New link at the top of the list and
you should be redirected back to the create view. Keep in mind though that we are
not implementing any input validation here for simplicity’s sake. In real applications,
you should consider implementing model validations using either data annotation or
FluentValidation. You can read more about these by referring to the following links:

•	 https://docs.microsoft.com/en-us/aspnet/core/mvc/models/
validation

•	 https://docs.fluentvalidation.net/en/latest/aspnet.html

Now, let’s move on to the next step.

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.fluentvalidation.net/en/latest/aspnet.html

Building a to-do application with MVC 179

Implementing edit functionality
Switch back to the TodoController class and add the following code snippet for the
edit functionality:

[HttpGet]

public IActionResult Edit(int id)

{

 var todo = _dbContext.Todos.Find(id);

 return View(todo);

}

[HttpPost]

public IActionResult Edit(Todo todo)

{

 _dbContext.Todos.Update(todo);

 _dbContext.SaveChanges();

 return RedirectToAction(“Index”);

}

The preceding code also has just two action methods. The first Edit() method is
responsible for populating the fields in the view based on the ID being passed to the
route. The second Edit() method will be invoked during an HTTP POST request, which
handles the actual update to the datastore.

To create the corresponding view for the Edit action, just follow the same steps as we did
in the previous functionality, but this time, select Edit as the scaffolding template. This
process should generate a Razor file called Edit.cshtml in the View/Todo folder.

The next step is to update our Index view to map the routes for edit and delete actions.
Go ahead and update the Action link to the following:

@Html.ActionLink(“Edit”, “Edit”, new { id = item.Id }) |

@Html.ActionLink(“Delete”, “Delete”, new { id = item.Id })

The preceding code defines a couple of ActionLink HTML helpers for navigating
between views with parameters. The changes we made in the preceding code are
passing the ID as the parameter to each route and removing the details link, as we
won’t be covering that here. Anyway, implementing the details page should be pretty
straightforward. You can also view the GitHub code repository of this chapter to see how
it was implemented.

180 Razor View Engine

Now, when you run the application, you should be able to navigate from the to-do
Index page to the Edit page by clicking the Edit link. Figure 4.21 shows you a sample
screenshot of the Edit page.

Figure 4.21 – The to-do Edit page

Building a to-do application with MVC 181

In the preceding screenshot, notice that the ID is now included in the route and the page
is automatically being populated with the corresponding data. Now, let’s move on to the
next step.

Implementing the delete functionality
Switch back to the TodoController class and add the following code snippet for the
delete functionality:

public IActionResult Delete(int? id)

{

 var todo = _dbContext.Todos.Find(id);

 if (todo == null)

 {

 return NotFound();

 }

 return View(todo);

}

[HttpPost]

public IActionResult Delete(int id)

{

 var todo = _dbContext.Todos.Find(id);

 _dbContext.Todos.Remove(todo);

 _dbContext.SaveChanges();

 return RedirectToAction(“Index”);

}

182 Razor View Engine

The first Delete() method in the preceding code is responsible for populating the page
with the corresponding data based on the ID. If the ID does not exist in our in-memory
datastore, then we simply return a NotFound() result. The second Delete() method
will be triggered when clicking the Delete button. This method executes the deletion of
the item from the datastore. Figure 4.22 shows you a sample screenshot of the Delete
page.

Figure 4.22 – The to-do Delete page

At this point, you should have a better understanding of how MVC works and how we
can easily implement Create, Read, Update, and Delete (CRUD) operations on a page.
There are a lot of things that we can do to improve the application, so take a moment to
add the missing features as an extra exercise. You could try integrating model validations,
logging, or any features that you want to see in the application. You can also refer to the
following project template to help you get up to speed on using MVC in concert with
other technologies to build web applications:

https://github.com/proudmonkey/MvcBoilerPlate

Let’s move on to the next section and take a look at Razor Pages.

https://github.com/proudmonkey/MvcBoilerPlate

Building a to-do app with Razor Pages 183

Building a to-do app with Razor Pages
Razor Pages is another web framework for building ASP.NET Core web applications. It
was first introduced with the release of ASP.NET Core 2.0 and became the default web
application template for ASP.NET Core.

Reviewing Razor Pages
To better understand the Razor Pages approach, Figure 4.23 provides a high-level diagram
of the process that describes the HTTP request and response flow.

Figure 4.23 – Razor Pages request and response flow

If you’ve worked with ASP.NET Web Forms before, or any web framework that follows a
page-centric approach, then you should find Razor Pages familiar. Unlike MVC, where
requests are handled in the controller, the routing system in Razor Pages is based on
matching URLs to the physical file path. In other words, all requests default to the root
folder, which is named Pages by default.

The route collection will then be constructed based on the file and folder paths within the
root folder. For example, if you have a Razor file that sits under Pages/Something/
MyPage.cshtml, then you can navigate to that page in the browser using the /
something/mypage route. Routing in Razor Pages is flexible as well, and you can
customize it however you want. Take a look at the following resource for detailed
references about Razor Pages routing:

https://www.learnrazorpages.com/razor-pages/routing

Razor Pages still uses the Razor view engine to generate HTML markup, just like you
would do with MVC. One of the main differences between the two web frameworks is that
Razor Pages doesn’t use controllers anymore, and instead uses individual pages. Typically,
Razor Pages consists of two main files: a .cshtml file and a .cshtml.cs file. The
.cshtml file is a Razor file containing Razor markup, and the .cshtml.cs file is a class
that defines the functionality for the page.

https://www.learnrazorpages.com/razor-pages/routing

184 Razor View Engine

For you to better understand how Razor Pages differs from MVC, let’s mimic the to-do
app that we built earlier with MVC. Note that we will only be covering the significant
differences in this example, and common things such as configuring an in-memory
datastore and running the app to see the output will not be covered. This is because the
process and implementation are pretty much the same as with MVC. The source code for
this exercise can be found here:

https://github.com/PacktPublishing/ASP.NET-Core-5-for-
Beginners/tree/master/Chapter%2004/Chapter_04_RazorViewEngine_
Examples/ToDo.RazorPages

Creating a Razor Pages application
Go ahead and fire up Visual Studio 2019, and then create a new project. This time, select
Web Application from the ASP.NET Core web application project templates, as shown in
Figure 4.24.

Figure 4.24 – Creating a new Razor Pages web app

Click the Create button to generate the default files. Figure 4.25 shows you how the Razor
Pages project structure is going to look.

https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2004/Chapter_04_RazorViewEngine_Examples/ToDo.RazorPages
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2004/Chapter_04_RazorViewEngine_Examples/ToDo.RazorPages
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2004/Chapter_04_RazorViewEngine_Examples/ToDo.RazorPages

Building a to-do app with Razor Pages 185

Figure 4.25 – The Razor Pages project structure

In the preceding screenshot, you’ll immediately notice that there are no Controllers,
Models, and Views folders anymore. Instead, you only have the Pages folder.
Razor Pages applications are configured using the AddRazorPages() service in the
ConfigureServices() method of the Startup class:

public void ConfigureServices(IServiceCollection services)

{

 services.AddRazorPages();

}

Now, let’s take a look at the Index.cshtml file to see how the page structure differs
from MVC views.

Understanding the Razor Pages structure
Here’s how the Index.cshtml markup looks:

@page

@model IndexModel

@{

 ViewData[“Title”] = “Home page”;

186 Razor View Engine

}

<div class=”text-center”>

 <h1 class=”display-4”>Welcome</h1>

</div>

We can see that the preceding markup is very similar to MVC views, except for two
things:

•	 It uses the @page directive at the very beginning of the file. This directive tells the
Razor engine to treat the page as Razor Pages so that any page interactions will be
properly routed to the correct handler method. In other words, the @page directive
indicates that actions and routes should not be handled in Controllers.

•	 Unlike in MVC, where @model represents the ViewModel or Model class to be
used in the view, the @model directive in Razor Pages represents the name of the
“code-behind” class for the Razor file instead. In this case, the Index.cshtml file
refers to the IndexModel class defined within the Index.cshtml.cs file, as
shown in the following code:

public class IndexModel : PageModel

{

 private readonly ILogger<IndexModel> _logger;

 public IndexModel(ILogger<IndexModel> logger)

 {

 _logger = logger;

 }

 public void OnGet() { }

}

The preceding code shows the typical code-behind class structure of Razor Pages. Every
class that represents a model for the page should inherit from the PageModel base class.
This class encapsulates several features and functions needed for executing things such as
ModelState, HttpContext, TempData, Routing, and many others.

Creating the to-do pages
Let’s go ahead create a new folder called Todos in the Pages folder. We’ll start with the
Index page for displaying the list of to-do items.

Building a to-do app with Razor Pages 187

Building the Index page
To create a new Razor page, just right-click on the Todos folder and then select Add
| Razor Pages…. Set the page name to Index and click the Add button. This process
should generate both Index.cshtml (Razor markup) and Index.cshtml.cs (code-
behind class) files in the Todos folder.

Now, copy the following code snippet into the code-behind class:

public class IndexModel : PageModel

{

 private TodoDbContext _dbContext;

 public IndexModel(TodoDbContext dbContext)

 {

 _dbContext = dbContext;

 }

 public List<Todo> Todos { get; set; }

 public void OnGet()

 {

 Todos = _dbContext.Todos.ToList();

 }

}

The preceding code is somewhat similar to the Controllers code in MVC, except for
the following:

•	 It now uses the OnGet() method to fetch the data. PageModel exposes a few
handler methods for executing requests, such as OnGet(), OnPost(), OnPut(),
OnDelete(), and more. The Razor Pages framework uses a naming convention
for matching the appropriate HTTP request methods (HTTP verbs) to execute. This
is done by prefixing the handler method with On followed by the HTTP verb name.
In other words, Razor Pages doesn’t use HTTP verb attributes such as [HttpGet],
[HttpPost], and so on when executing a request.

•	 It exposes a public property as ViewModel. In this case, the Todos property will
be populated with data from the datastore when you request the Index page in
the browser. This property will then be consumed or used in the Razor markup to
present the data. Take the following example:

<tbody>

 @foreach (var item in Model.Todos)

188 Razor View Engine

 {

 <tr>

 @*Removed other rows for brevity*@

 <td>

 <a asp-page=”Edit” asp-route-id=”@item. 	 	
 Id”>Edit |

 <a asp-page=”Details” asp-route-id=”@item.	 	
 Id”>Details |

 <a asp-page=”Delete” asp-route-id=”@item. 	 	
 Id”>Delete

 </td>

 </tr>

 }

</tbody>

The preceding markup uses the same structure as what we did in MVC, except that
we now reference the data from the Model.Todos property. Also, we now used
the asp-page and asp-route tag helpers to navigate between pages with route
parameters.

Now, when you run the application and navigate to /todos, you should be presented
with the following output shown in Figure 4.26.

Figure 4.26 –The Razor Pages to-do list page

Sweet! Now, let’s move on by adding the remaining functionalities.

Building a to-do app with Razor Pages 189

Add item implementation
The following code snippet is the equivalent of adding a new Todo item in Razor Pages:

public class CreateModel : PageModel

{

 //removed constructor and private field for brevity

 [BindProperty]

 public Todo Todo { get; set; }

 public IActionResult OnGet()

 {

 return Page();

 }

 public IActionResult OnPost()

 {

 _dbContext.Todos.Add(Todo);

 _dbContext.SaveChanges();

 return RedirectToPage(“./Index”);

 }

}

The preceding code contains a public property called Todo that represents
ViewModel and two main handler methods. The Todo property is decorated with the
[BindProperty] attribute so that the server will be able to reference the values from
the page on POST. The OnGet() method simply returns a page. The OnPost() method
takes the Todo object that was posted, inserts a new record into the datastore, and finally,
redirects you back to the Index page. For more information about model binding in
Razor Pages, see https://www.learnrazorpages.com/razor-pages/model-
binding.

Edit item implementation
The following is the code snippet for the edit functionality in Razor pages:

public class EditModel : PageModel

{

 //removed constructor and private field for brevity

 [BindProperty]

 public Todo Todo { get; set; }

https://www.learnrazorpages.com/razor-pages/model-binding
https://www.learnrazorpages.com/razor-pages/model-binding

190 Razor View Engine

 public void OnGet(int id)

 {

 Todo = _dbContext.Todos.Find(id);

 }

 public IActionResult OnPost()

 {

 _dbContext.Todos.Update(Todo);

 _dbContext.SaveChanges();

 return RedirectToPage(“./Index”);

 }

}

The preceding code is somewhat similar to the Create page except that the OnGet()
method now accepts an ID as an argument. The Id value is used to look up the associated
data from the datastore and if it finds it, it populates the Todo object. The Todo object
is then bound to the page and any changes on the associated properties will be captured
when the page is submitted. The OnPost() method takes care of updating the data to the
datastore.

The id value is added to the route data. This is done by setting the {id} template holder
in the @page directive, as shown in the following code:

@page “{id:int}”

The preceding code will create the /Edit/{id} route, where id represents a value. The
:int expression signifies a route constraint, which means that the id value must be an
integer.

Delete item implementation
The following is the code snippet for the delete functionality in Razor Pages:

[BindProperty]

public Todo Todo { get; set; }

public void OnGet(int id)

{

 Todo = _dbContext.Todos.Find(id);

}

Differences between MVC and Razor Pages 191

public IActionResult OnPost()

{

 _dbContext.Todos.Remove(Todo);

 _dbContext.SaveChanges();

 return RedirectToPage(“./Index”);

}

The preceding code is very similar to the Edit page. The only difference is the line where
we remove the item within the OnPost() handler method.

Now that you’ve learned the core differences between MVC and Razor Pages and have
a feel for both web frameworks by following hands-on exercises, you should be able to
decide which approach to use when building real-world applications.

Differences between MVC and Razor Pages
To summarize, here are the key differences between MVC and Razor Pages:

•	 Both are great web frameworks for building dynamic web applications. They have
their own benefits. You just have to use which approach is better suited in certain
situations.

•	 Both MVC and Razor Pages value the separation of concerns. MVC is just more
strict as it follows a specific pattern.

•	 Learning MVC may take you more time due to its complexity. You have to
understand the underlying concept behind it.

•	 Learning Razor Pages is easier as it’s less magical, more straightforward, and more
organized. You don’t have to switch between folders just to build a page.

•	 The MVC structure is grouped by functionality. For example, all actions in the view
should sit within the Controller class to follow the convention. This makes MVC
very flexible, especially when dealing with complex URL routings.

•	 The Razor Pages structure is grouped by features and purpose. For example, any
logic for the to-do page is contained within a single location. This enables you to
easily add or remove features in your application without modifying different areas
in your code. Also, code maintenance is much easier.

192 Razor View Engine

Summary
This chapter was huge! We learned about the concept of the Razor view engine and how
it powers different web frameworks to generate HTML markup using a unified markup
syntax. This is one of the main reasons why ASP.NET Core is powerful; it gives you the
flexibility to choose whatever web framework you prefer without you having to learn a
different markup syntax for building UIs.

We’ve covered two of the hot web frameworks to date that ship with ASP.NET Core. MVC
and Razor Pages probably each deserve their own dedicated chapter to cover their features
in detail. However, we still managed to tackle them and explore their common features
and differences by building an application from scratch, using an in-memory database.
Learning the basics of creating a simple data-driven web application is a great start to
becoming a full-fledged ASP.NET Core developer.

We can conclude that Razor Pages is ideal for beginners or for building simple dynamic
web applications as it minimizes complexity. MVC, on the other hand, is a great candidate
for building large-scale and more complex applications.

Understanding the different web frameworks is crucial for building real-world
applications, because it helps you understand the pros and cons that allows you to choose
which approach you should take, based on the project scope and requirements.

In the next chapter, we are going to explore Blazor as a new, alternative approach for
building modern web applications.

Further reading
•	 ASP.NET Core web apps: https://dotnet.microsoft.com/apps/

aspnet/web-apps

•	 Razor syntax: https://docs.microsoft.com/en-us/aspnet/core/
mvc/views/razor

•	 Learn ASP.NET Core: https://dotnet.microsoft.com/learn/aspnet

•	 ASP.NET Core built-in tag helpers: https://docs.microsoft.com/en-us/
aspnet/core/mvc/views/tag-helpers/built-in

•	 ASP.NET Core tag helpers: https://docs.microsoft.com/en-us/
aspnet/core/mvc/views/tag-helpers/intro

•	 C# => operator: https://docs.microsoft.com/en-us/dotnet/csharp/
language-reference/operators/lambda-operator

https://dotnet.microsoft.com/apps/aspnet/web-apps
https://dotnet.microsoft.com/apps/aspnet/web-apps
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://dotnet.microsoft.com/learn/aspnet
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/built-in
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/built-in
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/intro
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/intro
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-operator
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-operator

Further reading 193

•	 ASP.NET Core fundamentals: https://docs.microsoft.com/en-us/
aspnet/core/fundamentals

•	 Razor Pages page model class: https://docs.microsoft.com/en-us/
dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel

•	 Learn Razor Pages: https://www.learnrazorpages.com/razor-pages

•	 EF Core: https://docs.microsoft.com/en-us/ef/core/

•	 EF Core in-memory provider: https://docs.microsoft.com/en-us/ef/
core/providers/in-memory

https://docs.microsoft.com/en-us/aspnet/core/fundamentals
https://docs.microsoft.com/en-us/aspnet/core/fundamentals
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pagemodel
https://www.learnrazorpages.com/razor-pages
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/providers/in-memory
https://docs.microsoft.com/en-us/ef/core/providers/in-memory

5
Getting Started

with Blazor
In the previous chapter, we learned about the fundamentals of Razor View Engine
and understood how it powers different web frameworks to render web UIs. We
covered hands-on coding exercises to get a feel for both the MVC and Razor Pages web
frameworks that ship with ASP.NET Core for building powerful web applications. In this
chapter, we are going to look at the latest addition to the ASP.NET Core web framework –
Blazor.

The Blazor web framework is a huge topic; this book splits the topic into two chapters
for you to easily grasp the core concepts and fundamentals needed for you to get started
with the framework. By the time you’ve finished both chapters, you will know how Blazor
applications can be used in concert with various technologies to build powerful and
dynamic web applications.

196 Getting Started with Blazor

Here are the topics that we’ll cover in this chapter:

•	 Understanding the Blazor web framework and its different flavors

•	 Understanding the goal of what we are going to build using various technologies

•	 Creating a simple Web API

•	 Learning how to use in-memory databases with Entity Framework Core

•	 Learning how to perform real-time updates with SignalR

•	 Implementing the backend application for the tourist spot application

This chapter is mainly targeted at beginner- and intermediate-level .NET developers
with prior C# experience, who want to jump into Blazor and get their hands dirty with
practical examples. It will help you learn the basics of the Blazor programming model, for
you to build your first web application from scratch.

Technical requirements
This chapter uses Visual Studio 2019 to build the project. You can view the source code
for this chapter at https://github.com/PacktPublishing/ASP.NET-Core-5-
for-Beginners/tree/master/Chapter%2005%20and%2006/Chapter_05_
and_06_Blazor_Examples/TouristSpot.

Before diving into this chapter, make sure that you have a basic understanding of ASP.
NET Core and C# in general, because we’re not going to cover their fundamentals in this
chapter.

Please visit the following link to check the CiA videos: https://bit.ly/3qDiqYY

Understanding the Blazor web framework
Blazor was introduced as an experimental project in early 2018. It’s the latest addition to
the Single-Page Application (SPA)-based ASP.NET Core web frameworks. You can think
of it as similar to React, Angular, Vue, and other SPA-based frameworks, but it is powered
by C# and the Razor markup language, enabling you to create web applications without
having to write JavaScript. Yes, you heard that right – without JavaScript! Though Blazor
doesn’t require you to use JavaScript, it offers a feature called JavaScript interoperability
(JS interop), which allows you to invoke JavaScript code from your C# code and vice
versa. Pretty neat!

https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2005%20and%2006/Chapter_05_and_06_Blazor_Examples/TouristSpot
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2005%20and%2006/Chapter_05_and_06_Blazor_Examples/TouristSpot
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2005%20and%2006/Chapter_05_and_06_Blazor_Examples/TouristSpot
https://bit.ly/3qDiqYY

Understanding the Blazor web framework 197

Regardless of whether you are coming from a Windows, Xamarin, Web Forms, or
traditional ASP.NET MVC development background, or are completely new to ASP.
NET Core and want to take your skills to the next level, Blazor is definitely a great choice
for you since it enables you to use your existing C# skills to write web UIs. Learning
the framework itself is easy, as long as you know basic HTML and CSS. It was designed
to enable C# developers to take advantage of their skills to easily transition to the web
paradigm for building SPA-based web applications.

Reviewing the different flavors of Blazor
Before we talk about the different flavors of Blazor, let’s have a quick overview of Razor
components.

Razor components are the building blocks for Blazor applications. They are self-
contained chunks of UI that are composed of HTML, CSS, and C# code using Razor
markup. These components can be a whole page, a section in a page, a form, or a dialog
box. Components are very flexible, lightweight, and easy to reuse, nest, or even share
across different applications, such as Razor Pages or MVC apps. Any changes that happen
in a component, such as a button click that affects the state of an app, will render a graph
and a UI diff is calculated. This diff contains a set of DOM edits that are required to
update the UI and is applied by the browser.

Blazor has gained a lot of popularity, even if the framework is still pretty much new to the
market. In fact, big UI providers, such as Telerik, Syncfusion, and DevExpress, already
offer a bunch of Razor components that you can integrate into your application. There are
also other open source projects that provide ready-made components that you can use for
free, such as MatBlazor and RadZen.

Blazor comes with two main hosting models:

•	 Blazor Server

•	 Blazor WebAssembly (WASM)

Let’s do a quick rundown of each.

198 Getting Started with Blazor

Blazor Server
Blazor Server, often referred to as server-side Blazor, is a type of Blazor application that
runs on a server. It was the first Blazor model to be officially shipped in .NET Core and is
ready for production use. Figure 5.1 shows how Blazor Server works under the hood.

Figure 5.1 – Blazor Server

In the preceding diagram, we can see that the server-based Blazor application is wrapped
within the ASP.NET Core application, allowing it to run and be executed on the server.
It mainly uses SignalR to manage and drive real-time server updates to the UI and vice
versa. This means that maintaining the application state, DOM interactions, and rendering
of the components happens in the server, and SignalR will notify the UI via a hub with a
diff to update the DOM when the application state changes.

The pros of this are as follows:

•	 No need for you to write JavaScript to run the app.

•	 Your application code stays on the server.

•	 Since the application runs on the server, you can take advantage of ASP.NET
Core features, such as hosting a Web API in a shared project, integrating other
middleware, and connecting to a database and other external dependencies via DI.

Understanding the Blazor web framework 199

•	 Enables fast load times and small download sizes, since the server takes care of
heavy workloads.

•	 Runs on any browser.

•	 Great debugging capability.

The cons are as follows:

•	 It requires a server to bootstrap the application.

•	 No offline support. SignalR requires an open connection to the server. The moment
the server goes down, so does your application.

•	 There is higher network latency, since every UI interaction needs to call the server
to re-render the component state. This can be resolved if you have a geo-replicated
server that hosts your app in various regions.

•	 Maintaining and scaling can be costly and difficult. This is because every time you
open an instance of a page, a separate SignalR connection is created, which can be
hard to manage. This can be resolved when using the Azure SignalR service when
deploying your app to Azure. For non-Azure cloud providers, you may have to rely
on your traffic manager to get around this challenge.

Blazor WebAssembly
WASM, in simple terms, is an abstraction that enables high-level programming languages,
such as C#, to run in the browser. This process is done by downloading all the required
WASM-based .NET assemblies and application DLLs in the browser, so that the
application can run independently in the client browser. Most major browsers nowadays,
such as Google Chrome, Microsoft Edge, Mozilla Firefox, and Apple’s Safari and WebKit,
support WASM technology.

Blazor WASM has recently been integrated into Blazor. Under the hood, Blazor WASM
uses WASM-based .NET runtimes to execute an application’s .NET assemblies and DLLs.
This type of application can run on a browser that supports WASM web standards with no
plugins required. That said, Blazor WASM is not a new form of Silverlight.

200 Getting Started with Blazor

Figure 5.2 shows you how a Blazor WASM application works under the hood.

Figure 5.2 – Blazor WASM

In the preceding illustration, we can see that the Blazor WASM application doesn’t depend
on ASP.NET Core; the application is directly executed on the client. Client-side Blazor is
running using WASM technology. By default, a Blazor WASM application runs purely on
the client; however, there’s an option for you to turn it into an ASP.NET-hosted app to get
all the benefits of Blazor and full-stack .NET web development.

The pros of this are as follows:

•	 No need for you to write JavaScript to run the app.

•	 No server-side dependency, which means no latency or scalability issues since the
app runs on the client machine.

•	 Enables offline support, since the app is offloaded to the client as a self-contained
app. This means you can still run the application while being disconnected from the
server where your application is hosted.

•	 Support for Progressive Web Applications (PWAs). PWAs are web applications
that use modern browser APIs and capabilities to behave like native ones.

Understanding the Blazor web framework 201

These are the cons:

•	 The initial loading of a page is slow, and the download size is huge because all the
required dependencies need to be pulled upfront to offload your application to the
client’s browser. This can be optimized in the future, when caching is implemented
to reduce the size of downloads and the amount of time that subsequent requests
take to process.

•	 Since DLLs are downloaded to the client, your application code is exposed. So, you
must be very careful about what you put there.

•	 Requires a browser that supports WASM. Note that most major browsers now
support WASM.

•	 It’s a less mature runtime as it’s new.

•	 Debugging might be harder and limited, compared to Blazor Server.

For more information about Blazor hosting models, see https://docs.microsoft.
com/en-us/aspnet/core/blazor/hosting-models.

Mobile Blazor Bindings
Blazor also provides a framework for building native and hybrid mobile applications for
Android, iOS, Windows, and macOS, using C# and .NET. Mobile Blazor Bindings uses
the same markup engine for building UI components. This means that you can use Razor
syntax to define UI components and their behaviors. Under the hood, the UI components
are still based on Xamarin.Forms, as it uses the same XAML-based structure to build
components. What makes this framework stand out over Xamarin.Forms is that it allows
you to mix in HTML, giving developers the choice to write apps using the markup they
prefer. With hybrid apps, you can mix in HTML to build components just as you would
build web UI components. This makes it a great stepping stone for ASP.NET developers
looking to get into cross-platform native mobile application development using their
existing skills. With that being said, Mobile Blazor Bindings is still in its experimental
stage and there is no guarantee about anything until it is officially released.

We won’t be covering Mobile Blazor Bindings development in this chapter. If you want to
learn more about it, you can refer to the official documentation here: https://docs.
microsoft.com/en-us/mobile-blazor-bindings.

https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models
https://docs.microsoft.com/en-us/mobile-blazor-bindings
https://docs.microsoft.com/en-us/mobile-blazor-bindings

202 Getting Started with Blazor

Five players, one goal
As we’ve learned from the previous section, Blazor is only a framework for building UIs.
To make learning Blazor fun and interesting, we are going to use various technologies to
build a whole web application to fulfill a goal. That goal is to build a simple data-driven
web application with real-time capability using cutting-edge technologies: Blazor Server,
Blazor WASM, ASP.NET Core Web API, SignalR, and Entity Framework Core.

Figure 5.3 illustrates the high-level process of how each technology connects.

Figure 5.3 – Five players, one goal

Based on the preceding diagram, we are going to need to build the following applications:

•	 A web app that displays and updates information on the page via API calls. This
application will also implement a SignalR subscription that acts as the client to
perform real-time data updates to the UI.

•	 A Web API app that exposes GET, PUT, and POST public-facing API endpoints.
This application will also configure an in-memory data store to persist data and
implement SignalR to broadcast a message to the hub where clients can subscribe
and get data in real time.

•	 A PWA that submits a new record via an API call.

Now that you already have an idea of what to build and which sets of technologies to use,
let’s start getting our hands dirty with coding.

Building a tourist spot application 203

Building a tourist spot application
In order to cover real-world scenarios in a typical data-driven web application, we will
build a simple tourist spot application that composes various applications to perform
different tasks. You can think of this application as a wiki for tourist destinations, where
users can view and edit information about places. Users can also see the top places, based
on reviews, and they also see new places submitted by other similar applications in real
time. By real time, we mean without the user having to refresh the page to see new data.

Figure 5.4 describes the applications needed and the high-level flow of the process for our
tourist spot application example

Figure 5.4 – The applications to be built

If you’re ready, then let’s get cracking. We’ll start by building the backend application,
which exposes the API endpoints to serve data so that other applications can consume it.

204 Getting Started with Blazor

Creating the backend application
For the tourist spot application project, we are going to use ASP.NET Core Web API as
our backend application.

Let’s go ahead and fire up Visual Studio 2019 and then select the Create a new project
option. On the next screen, select ASP.NET Core Web Application and then click Next.
The Configure your new project dialog should appear as it does in Figure 5.5.

Figure 5.5 – Configure your new project

This dialog allows you to configure your project and solution name, as well as the location
path to where you want the project to be created. For this particular example, we’ll just
name the project PlaceApi and set the solution name to TouristSpot. Now, click
Create and you should see the dialog shown in Figure 5.6.

Creating the backend application 205

Figure 5.6 – Create a new ASP.NET Core web application

This dialog allows you to choose the type of web framework that you want to create.
For this project, just select API and then click Create to let Visual Studio generate the
necessary files for you. The default files generated should look something like it does in
Figure 5.7.

Figure 5.7 – Web API default project structure

206 Getting Started with Blazor

The preceding screenshot shows the default structure of an ASP.NET Core Web API
application. Please note that we won’t dig into the details about Web API in this chapter,
but to give you a quick overview, Web API works the same way as the traditional ASP.NET
MVC, except that it was designed for building RESTful APIs that can be consumed over
HTTP. In other words, Web API doesn’t have Razor View Engine and it wasn’t meant to
generate pages. We’ll deep dive into the details of Web API in Chapter 7, APIs and Data
Access.

Now, let’s move on to the next step.

Configuring an in-memory database
In the previous chapter, we learned how to use an in-memory database with Entity
Framework Core. If you’ve made it this far, you should now be familiar with how to
configure an in-memory data store. For this demonstration, we will be using the technique
you’re now familiar with to easily create a data-driven app, without the need to spin up
a real database server to store data. Working with a real database in Entity Framework
Core will be covered in Chapter 7, APIs and Data Access; for now, let’s just make use of an
in-memory database, for the simplicity of this exercise.

Installing Entity Framework Core
Entity Framework Core was implemented as a separate NuGet package to allow
developers to easily integrate it when needed. There are many ways to integrate NuGet
package dependencies in your application. We could either install it via the command
line (CLI) or via the NuGet package management interface (the UI) integrated into Visual
Studio. To install dependencies using the UI, simply right-click on the Dependencies
folder of the project and then select the Manage NuGet Packages… option. Figure 5.8
shows you how the UI should come up.

Figure 5.8 – NuGet package management UI

Creating the backend application 207

In the Browse tab, type in the package names listed here and install them:

•	 Microsoft.EntityFrameworkCore

•	 Microsoft.EntityFrameworkCore.InMemory

After successfully installing both packages, make sure to check your project’s
Dependencies folder and verify that they were added (as shown in Figure 5.9).

Figure 5.9 – Installed project NuGet dependencies

Note:
The latest official version of Microsoft.EntityFrameworkCore at
the time of writing is 5.0.0. Future versions may change and could impact
the sample code used in this chapter. So, make sure to always check for any
breaking changes when deciding to upgrade to newer versions.

Now that we have Entity Framework Core in place, let’s move on to the next step and
configure some test data.

Implementing the data access layer
Create a new folder called Db in the project root and then create a sub-folder called
Models. Right-click on the Models folder and select Add > Class. Name the class
Places.cs, click Add, and then paste the following code:

using System;

namespace PlaceApi.Db.Models

{

 public class Place

208 Getting Started with Blazor

 {

 public int Id { get; set; }

 public string Name { get; set; }

 public string Location { get; set; }

 public string About { get; set; }

 public int Reviews { get; set; }

 public string ImageData { get; set; }

 public DateTime LastUpdated { get; set; }

 }

}

The preceding code is just a plain class that houses some properties. We will use this class
later to populate each property with test data.

Now, create a new class called PlaceDbContext.cs in the Db folder and copy the
following code:

using Microsoft.EntityFrameworkCore;

using PlaceApi.Db.Models;

namespace PlaceApi.Db

{

 public class PlaceDbContext : DbContext

 {

 public PlaceDbContext(DbContextOptions<PlaceDbContext>
 options)

 : base(options) { }

 public DbSet<Place> Places { get; set; }

 }

}

The preceding code defines a DbContext instance and a single entity that exposes a
Places property (entity) as a DbSet instance. DbSet<Place> represents a collection
of data in memory and is the gateway to performing database operations. For example,
any changes to DbSet<Place> will be committed to the database, right after invoking
the SaveChanges() method of DbContext.

Creating the backend application 209

Let’s continue by adding another new class called PlaceDbSeeder.cs in the Db folder.
The first thing that we need to do is to declare the following namespace references:

using Microsoft.EntityFrameworkCore;

using Microsoft.Extensions.DependencyInjection;

using PlaceApi.Db.Models;

using System;

using System.IO;

using System.Linq;

The preceding code enables us to access the methods and members from each namespace
that are required when we implement our methods to seed the test data.

Now, paste the following method into the class:

private static string GetImage(string fileName, string
fileType)

{

 var path = Path.Combine(Environment.CurrentDirectory, “Db/
 Images”, fileName);

 var imageBytes = File.ReadAllBytes(path);

 return $”data:{fileType};base64,{Convert.
 ToBase64String(imageBytes)}”;

}

The GetImage() method, in the preceding code, gets the image files stored within the
Db/Images folder and converts the image to a byte array. It then converts the bytes to
the base64 string format and returns the formatted data as an image. We are going to
reference this method in the next step.

Now, paste the following code into the class:

public static void Seed(IServiceProvider serviceProvider)

{

 using var context = new PlaceDbContext(serviceProvider.
 GetRequiredService<DbContextOptions<PlaceDbContext>>());

 if (context.Places.Any()){ return; }

 context.Places.AddRange(

 new Place

 {

 Id = 1,

210 Getting Started with Blazor

 Name = “Coron Island”,

 Location = “Palawan, Philippines”,

 About = “Coron is one of the top destinations for
 tourists to add to their wish list.”,

 Reviews = 10,

 ImageData = GetImage(“coron_island.jpg”, “image/
 jpeg”),

 LastUpdated = DateTime.Now

 },

 new Place

 {

 Id = 2,

 Name = “Olsob Cebu”,

 Location = “Cebu, Philippines”,

 About = “Whale shark watching is the most popular
 tourist attraction in Cebu.”,

 Reviews = 3,

 ImageData = GetImage(“oslob_whalesharks.png”,
 “image/png”),

 LastUpdated = DateTime.Now

 }

);

 context.SaveChanges();

}

The Seed() method in the preceding code will initialize a couple of Place data sets
when the application starts. This is done by adding the data into the Places entity of
PlaceDbContext. You can see that we set the value of the ImageData property by
calling the GetImage() method created earlier.

Creating the backend application 211

Now that we have implemented our seeder class, the next thing we need to do is to create
a new class that will house a couple of extension methods for registering our in-memory
database and using our seeder class as a middleware. Within the Db folder, go ahead and
add a new class called PlaceDbServiceExtension.cs and paste in the following
code:

using Microsoft.AspNetCore.Builder;

using Microsoft.EntityFrameworkCore;

using Microsoft.Extensions.DependencyInjection;

namespace PlaceApi.Db

{

 public static class PlaceDbServiceExtension

 {

 public static void AddInMemoryDatabaseService(this
 IServiceCollection services, string dbName)

 => services.AddDbContext<PlaceDbContext>(options
 => options.UseInMemoryDatabase(dbName));

 public static void InitializeSeededData (this
 IApplicationBuilder app)

 {

 using var serviceScope = app.ApplicationServices.
 GetRequiredService<IServiceScopeFactory>().
 CreateScope();

 var service = serviceScope.ServiceProvider;

 PlaceDbSeeder.Seed(service);

 }

 }

}

212 Getting Started with Blazor

The preceding code defines two main static methods.
AddInMemoryDatabaseService() is an IServiceCollection extension method
that registers PlaceDbContext as a service in the dependency injection (DI) container.
Notice that we are configuring the UseInMemoryDatabase () extension method as
a parameter to the AddDbContext() method call. This tells the framework to spin up
an in-memory database with a given database name. The InitializeSeededData()
extension method is responsible for generating test data when the application runs. It
uses the GetRequiredService() method of the ApplicationServices class to
reference the service provider used to resolved dependencies from the scope. It then calls
the PlaceDbSeeder.Seed() method that we created earlier and passes the service
provider to initialize the test data.

The this keyword, before the object type in each method’s parameters,
denotes that a method is an extension method. Extension methods enable
you to add a method to an existing type. For this particular example, we are
adding the AddInMemoryDatabaseService() method to an object of type
IServiceCollection and adding the InitializeSeededData() method to
an object of type IApplicationBuilder. For more information about extension
methods, see https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/classes-and-structs/extension-methods.

At this point, we now have a DbContext instance that enables us to access our Places
DbSet, a helper class that will generate some data, and a couple of extension methods to
register our in-memory service. What we need to do next is to wire them into Startup.
cs to populate our data when the application starts.

Modifying the Startup class
Let’s update the ConfigureServices() method of the Startup class to the following
code:

public void ConfigureServices(IServiceCollection services)

{

 services.AddInMemoryDatabaseService(“PlacedDb”);

 services.AddControllers();

}

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods

Creating the backend application 213

In the preceding code, we’ve invoked the AddInMemoryDatabaseService()
extension method that we created earlier. Again, this process registers PlaceDbContext
in IServiceCollection and defines an in-memory database called PlacedDb.
Registering DbContext as a service into the DI container enables us to reference an
instance of this service in any class within the application via DI.

Now, the final step that we need to do is to call the InitializeSeededData()
extension method in the Configure() method as follows:

public void Configure(IApplicationBuilder app,
IWebHostEnvironment env)

{

 app.InitializeSeededData();

 //removed other middlewares for brevity

}

At this point, our test data should now be loaded into our in-memory database when the
application starts and should be ready for use in our application.

Implementing real-time functionality with SignalR
Adding real-time functionality to any ASP.NET Core server application is pretty easy
nowadays, because SignalR is fully integrated into the framework. This means that there’s
no need to download or reference a separate NuGet package just to be able to implement
real-time capability.

ASP.NET SignalR is a technology that offers a clean set of APIs that enables real-time
behavior for your web application, where the server pushes data to the client, as opposed
to the traditional way of having the client continuously pull data from the server to get
updated.

To start working with ASP.NET Core SignalR, we need to create a hub first. Hub is a
special class in SignalR that enables us to call methods on connected clients from the
server. The server in this example is our Web API, for which we will define a method for
clients to invoke. The client in this example is the Blazor Server application.

214 Getting Started with Blazor

Let’s create a new class called PlaceApiHub under the root of the application and then
paste in the following code:

using Microsoft.AspNetCore.SignalR;

namespace PlaceApi

{

 public class PlaceApiHub : Hub

 {

 }

}

The preceding code is just a class that inherits from the Hub class. We’ll leave the Hub
class empty, as we are not invoking any methods from the client. Instead, the API will
send the events over the hub.

Next, we are going to register SignalR and the ResponseCompression service in the
DI container. Add the following code within the ConfigureServices() method of
the Startup class:

public void ConfigureServices(IServiceCollection services)

{

 services.AddSignalR();

 services.AddResponseCompression(opts =>

 {

 opts.MimeTypes = ResponseCompressionDefaults.MimeTypes.
 Concat(

 new[] { “application/octet-stream” });

 });

 // Removed other services for brevity

}

Next, we need to add the ResponseCompression middleware in the pipeline and map
our Hub. Add the following code within the Configure() method:

public void Configure(IApplicationBuilder app,
IWebHostEnvironment env)

{

 // Removed other code for brevity

Creating the backend application 215

 app.UseResponseCompression();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapControllers();

 endpoints.MapHub<PlaceApiHub>(“/PlaceApiHub”);

 });

}

The preceding code defines a route for the SignalR hub by mapping the PlaceApiHub
class. This enables the client application to connect to the hub and listen to events being
sent from the server.

That was simple. We will implement sending an event in the next section when creating
the Web API endpoints.

Creating the API endpoints
Now that our in-memory database is all set and we’ve configured SignalR for our real-
time capability, it’s time for us to create the API controller and expose some endpoints to
serve data to the client. In this particular example, we are going to need the following API
endpoints to handle fetching, creating, and updating data:

•	 GET: api/places

•	 POST: api/places

•	 PUT: api/places

Go ahead and right-click on the Controllers folder and then select Add > Controller
> API Controller Empty, and then click Add.

Name the class PlacesController.cs and then click Add. Now, replace the default
generated code so that what you have looks like the following code:

using Microsoft.AspNetCore.Mvc;

using PlaceApi.Db;

using PlaceApi.Db.Models;

using System;

using System.Linq;

216 Getting Started with Blazor

namespace PlaceApi.Controllers

{

 [ApiController]

 [Route(“api/[controller]”)]

 public class PlacesController : ControllerBase

 {

 private readonly PlaceDbContext _dbContext;

 private readonly IHubContext<PlaceApiHub> _hubContext;

 public PlacesController(PlaceDbContext dbContext,

 IHubContext<PlaceApiHub> hubContext)

 {

 _dbContext = dbContext;

 _hubContext = hubContext;

 }

 [HttpGet]

 public IActionResult GetTopPlaces()

 {

 var places = _dbContext.Places.OrderByDescending(o
 => o.Reviews).Take(10);

 return Ok(places);

 }

 }

}

The preceding code shows the typical structure of an API Controller class. An
API should implement the ControllerBase abstract class to utilize the existing
functionalities built into the framework for building RESTful APIs. We’ll talk in
more depth about APIs in the next chapter. For the time being, let’s just walk through
what we did in the preceding code. The first two lines of the PlacesController
class define private and read-only fields for PlaceDbContext and
IHubContext<PlaceApiHub>. The next line defines the class constructor and injects
PlaceDbContext and IHubContext<PlaceApiHub> as dependencies to the class.
In this case, any methods within the PlacesController class will be able to access the
instance of PlaceDbContext and IHubContext, allowing us to invoke all its available
methods and properties.

Creating the backend application 217

Currently, we have only defined one method in our PlaceController. The
GetTopPlaces() method is responsible for returning the top 10 rows of data from our
in-memory datastore. We’ve used the LINQ OrderByDescending() and Take()
extension methods, of the Enumerable type, to get the top rows based on the Reviews
value. You can see that the method has been decorated with the [HttpGet] attribute,
which signifies that the method can only be invoked by an HTTP GET request.

Now, let’s add another method for handling new record creation. Append the following
code within the class:

[HttpPost]

public IActionResult CreateNewPlace([FromBody] Place place)

{

 var newId = _dbContext.Places.Select(x => x.Id).Max() + 1;

 place.Id = newId;

 place.LastUpdated = DateTime.Now;

 _dbContext.Places.Add(place);

 int rowsAffected = _dbContext.SaveChanges();

 if (rowsAffected > 0)

 {

 _hubContext.Clients.All.SendAsync(“NotifyNewPlaceAdded”,
 place.Id, place.Name);

 }

 return Ok(“New place has been added successfully.”);

}

The preceding code is responsible for creating a new Place record in our in-memory
database and at the same time broadcasting an event to the hub. In this case, we
are invoking the Clients.All.SendAsync() method of the Hub class and
passing place.Id and place.Name to the NotifyNewPlaceAdded event. Note
that you can also pass an object to the SendAsync() method instead of passing
individual parameters, just like what we did in this example. You can see that the
CreateNewPlace() method has been decorated with the [HttpPost] attribute,
which signifies that the method can be invoked only by HTTP POST requests. Keep in
mind that we are generating Id manually by incrementing the existing maximum ID from
our data store. In a real application using a real database, you may not need to do this as
you can let the database auto-generate Id for you.

218 Getting Started with Blazor

Let’s create the last endpoint that we need for our application. Add the following code
block to the class:

[HttpPut]

public IActionResult UpdatePlace([FromBody] Place place)

{

 var placeUpdate = _dbContext.Places.Find(place.Id);

 if (placeUpdate == null)

 {

 return NotFound();

 }

 placeUpdate.Name = place.Name;

 placeUpdate.Location = place.Location;

 placeUpdate.About = place.About;

 placeUpdate.Reviews = place.Reviews;

 placeUpdate.ImageDataUrl = place.ImageDataUrl;

 placeUpdate.LastUpdated = DateTime.Now;

 _dbContext.Update(placeUpdate);

 _dbContext.SaveChanges();

 return Ok(“Place has been updated successfully.”);

}

The preceding code is responsible for updating an existing Place record in our
in-memory database. The UpdatePlace() method takes a Place object as a
parameter. It first checks whether the record exists based on the ID. If the record isn’t in
the database, we return a NotFound() response. Otherwise, we update the record in the
database and then return an OK() response with a message. Notice that the method in
this case is decorated with the [HttpPut] attribute, which denotes that this method can
only be invoked by an HTTP PUT request.

Creating the backend application 219

Enabling CORS
Now that we have our API ready, the next step that we are going to take is to enable
Cross-Origin Resource Sharing (CORS). We need to configure this so that other
client applications that are hosted in different domains/ports can access the API
endpoints. To enable CORS in ASP.NET Core Web API, add the following code in the
ConfigureServices() method of the Startup class:

services.AddCors(options =>

{

 options.AddPolicy(“AllowAll”,

 builder =>

 {

 builder.AllowAnyOrigin()

 .AllowAnyHeader()

 .AllowAnyMethod();

 });

});

The preceding code adds a CORS policy to allow any client applications access to
our API. In this case, we’ve set up a CORS policy with the AllowAnyOrigin(),
AllowAnyHeader(), and AllowAnyMethod() configurations. Bear in mind, though,
that you should consider setting the allowable origins, methods, headers, and credentials
before exposing your APIs publicly in real-world applications. For details about CORS, see
the official documentation here: https://docs.microsoft.com/en-us/aspnet/
core/security/cors.

Now, add the following code in the Configure() method after the UseRouting()
middleware:

app.UseCors(“AllowAll”);

That’s it.

https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors

220 Getting Started with Blazor

Testing the endpoints
Now that we have implemented the required API endpoints for our application, let’s do
a quick test to ensure that our API endpoints are working. Press Ctrl + F5 to launch the
application in the browser and then navigate to the https://localhost:44332/
api/places endpoint. You should be presented with the output shown in Figure 5.10.

Figure 5.10 – API’s HTTP GET request output

The preceding screenshot shows the result of our GetTopPlaces() GET endpoint
in JSON format. Keep note of the localhost port value on which our API is currently
running, as we are going to use the exact same port number when invoking the endpoints
in our Blazor applications. In this case, our API is running on port 44332 locally in IIS
Express. You can see how this was defined by looking at the launchSettings.json
file within the Properties folder, as shown in the following code:

{

 “$schema”: “http://json.schemastore.org/launchsettings.json”,

 “iisSettings”: {

 “windowsAuthentication”: false,

 “anonymousAuthentication”: true,

 “iisExpress”: {

 “applicationUrl”: “http://localhost:60766”,

Creating the backend application 221

 “sslPort”: 44332

 }

 },

 //Removed other configuration for brevity

}

The preceding code shows the profile configurations when running the application
locally, including IIS Express. You can update the configuration and add new
profiles to run the application on different environments. In this example, we’ll just
leave the default configuration as is for simplicity’s sake. The default IIS Express
configuration sets the applicationUrl port to 60766 when running in http
and sets the port to 44332 when running in https. By default, the application uses
the UseHttpsRedirection() middleware in the Configure() method of the
Startup class. This means that when you try to use the http://localhost:60766
URL, the application will automatically redirect you to a secured port, which in this case is
port 44332.

Using the browser only allows us to test HTTP GET endpoints. To test the remaining
endpoints, such as POST and PUT, you may have to install a browser app extension. In
Chrome, you can install the Advanced REST client extension. You can also download
Postman to test out the API endpoints that we created earlier. Postman is a really handy
tool for testing APIs without having to create a UI, and it’s absolutely free. You can get it
here: https://www.getpostman.com/.

Figure 5.11 shows you a sample screenshot of the API tested in Postman.

Figure 5.11 – Testing with POSTMAN

https://www.getpostman.com/

222 Getting Started with Blazor

At this point, we have working API endpoints that we can use to present data on
our page. Learning the basics of creating a Web API is very important for the overall
implementation of our project.

Summary
In this chapter, we’ve learned about the concepts behind the different types of Blazor
hosting model. We’ve identified the goal of the application that we are going to build while
learning about Blazor, and we’ve identified the various technologies needed to reach it.
We started creating the backend application using the ASP.NET Core API, and we saw
how we can easily configure test data, without having to set up a real database, using
Entity Framework Core’s in-memory provider feature. This enables us to easily spin up
data-driven applications when doing proof-of-concept (POC) projects. We also learned
how to create simple REST Web APIs to serve data and learned how to configure SignalR
to perform real-time updates. Understanding the basic concepts of the technologies and
frameworks used in this chapter is very important to successfully working with
real applications.

We’ve learned that both of the Blazor models we saw in this chapter are great choices,
despite their cons. The programming behind Blazor allows C# developers, who want
to avoid JavaScript hurdles, to build SPAs without having to learn a new programming
language. Despite being fairly new, it’s clear that Blazor is going to be an incredible hit and
a great contender among other well-known SPA frameworks, such as Angular, React, and
Vue, and that’s because of how WASM essentially supersedes JavaScript. Sure, JavaScript
and its frameworks aren’t going anywhere, but being able to use an existing C# skillset to
build a web application that produces the same output as a JavaScript web application is a
great advantage, in terms of avoiding having to learn a new programming language just to
build web UIs. On top of that, we’ve learned that Blazor isn’t limited to web applications
only; Mobile Blazor Bindings is in the works to provide a framework for developers to
write cross-platform native mobile applications.

In the next chapter, we are going to continue exploring Blazor and build the remaining
pieces to complete our tourist spot application.

Questions
1.	 What are the different types of Blazor applications?

2.	 Why use Blazor over other SPA web frameworks?

Further reading 223

Further reading
•	 Introduction to ASP.NET Core Blazor: https://docs.microsoft.com/

en-us/aspnet/core/blazor

•	 ASP.NET Core Blazor hosting model configuration: https://docs.
microsoft.com/en-us/aspnet/core/blazor/fundamentals/
additional-scenarios

•	 Create Web APIs in ASP.NET Core: https://docs.microsoft.com/en-us/
aspnet/core/web-api

•	 Get started with ASP.NET Core SignalR: https://docs.microsoft.com/
en-us/aspnet/core/tutorials/signalr

•	 EF Core In-Memory Database Provider: https://docs.microsoft.com/
en-us/ef/core/providers/in-memory

https://docs.microsoft.com/en-us/aspnet/core/blazor
https://docs.microsoft.com/en-us/aspnet/core/blazor
https://docs.microsoft.com/en-us/aspnet/core/blazor/fundamentals/additional-scenarios
https://docs.microsoft.com/en-us/aspnet/core/blazor/fundamentals/additional-scenarios
https://docs.microsoft.com/en-us/aspnet/core/blazor/fundamentals/additional-scenarios
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/tutorials/signalr
https://docs.microsoft.com/en-us/aspnet/core/tutorials/signalr
https://docs.microsoft.com/en-us/ef/core/providers/in-memory
https://docs.microsoft.com/en-us/ef/core/providers/in-memory

Section 2 –
Walking

Now that you can crawl, let’s learn how to walk! After we demonstrate the Blazor
web frameworks, we’ll explore creating a web API project, accessing data, identity
authentication and authorization for your solution, and how to leverage containers in this
section.

This section includes the following chapters:

•	 Chapter 6, Exploring the Blazor Web Framework

•	 Chapter 7, APIs and Data Access

•	 Chapter 8, Identity

•	 Chapter 9, Containers

6
Exploring the Blazor

Web Framework
In the previous chapter, we learned what Blazor is all about and also learned about the
different hosting models that the framework offers. We started building the backend
application using the ASP.NET Core web API, EF Core, and SignalR. In this chapter, we
will build the remaining pieces to complete our goal.

Here is a list of the main topics that will be covered in this chapter:

•	 Learning about server-side and client-side Blazor

•	 Learning how to create Razor components

•	 Learning the basics of routing, state management, and data bindings

•	 Learning how to interact with the backend application to consume and pass data

•	 Building a tourist spot application using the two Blazor hosting models

228 Exploring the Blazor Web Framework

By the end of this chapter, you will have learned how to build a tourist spot application to
learn Blazor in conjunction with various technologies with the aid of hands-on practical
examples.

Technical requirements
This chapter follows on from the previous chapter, so before diving into this chapter, make
sure that you’ve read Chapter 5, Getting Started with Blazor, and understand the goal of
what we are going to achieve for building a sample application. It’s also recommended to
review Chapter 4, Razor View Engine, because Blazor uses the same markup engine for
generating pages. Although not mandatory, a basic knowledge of HTML and CSS will be
beneficial in helping you to easily understand how the page is constructed.

You can view the source code for this chapter at https://github.com/
PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/
Chapter%2005%20and%2006/Chapter_05_and_06_Blazor_Examples/
TouristSpot.

Please visit the following link to check the CiA videos: http://bit.ly/3qDiqYY

Creating the Blazor Server project
In this project, we will build the frontend web application for displaying the data from the
web API.

Let’s go ahead and add a new Blazor Server project within the existing project solution.
In the Visual Studio menu, select File | New | Project. Alternatively, you can also right-
click on the solution to add a new project. In the Create a new project dialog field, select
Blazor App, as shown in the following screenshot:

https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2005%20and%2006/Chapter_05_and_06_Blazor_Examples/TouristSpot
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2005%20and%2006/Chapter_05_and_06_Blazor_Examples/TouristSpot
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2005%20and%2006/Chapter_05_and_06_Blazor_Examples/TouristSpot
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2005%20and%2006/Chapter_05_and_06_Blazor_Examples/TouristSpot
http://bit.ly/3qDiqYY

Creating the Blazor Server project 229

Figure 6.1 – Creating a new Blazor app project

Click Next. In the next screen, you can configure the name and location path for your
project. In this example, we will just name the project BlazorServer.Web. Click
Create and you should be presented with the following dialog:

Figure 6.2 – Creating a new Blazor Server app project

230 Exploring the Blazor Web Framework

Select the Blazor Server App template, leave the default configuration as is, and then click
Create. Visual Studio should scaffold the necessary files needed to build the Blazor Server
app, as shown in the following screenshot:

Figure 6.3 – Blazor Server app default project structure

If you’ve read Chapter 4, Razor View Engine, you’ll notice that the Blazor Server project
structure is very similar to Razor Pages, except for the following:

•	 It uses the .razor file extension instead of .cshtml, the reason being that the
Blazor application is mainly based on components. The .razor files are Razor
components that enable you to build the UI using HTML and C#. It’s basically
the same as building UIs in a .cshtml file. In Blazor, components are pages
themselves, or they could be a page with child components. Razor components
can also be used in MVC or Razor Pages as they all use the same markup language,
called Razor View Engine.

•	 Blazor applications contain an App.razor component. Just like any other SPA
web framework, Blazor uses a main component to load the application UI. The
App.razor component serves as the master component for the application
and enables you to configure the routes for your components. Here is the default
implementation of the App.razor file:

<Router AppAssembly=”@typeof(Program).Assembly”>

 <Found Context=”routeData”>

 <RouteView RouteData=”@routeData” DefaultLayout=”@

Creating the Blazor Server project 231

typeof(MainLayout)” />

 </Found>

 <NotFound>

 <LayoutView Layout=”@typeof(MainLayout)”>

 <p>Sorry, there’s nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

The preceding code defines a Router component and configures a default layout to
be rendered in the browser when the application starts. In this case, the default layout
will render the MainLayout.razor component. For more information about Blazor
routing, refer to the following link: https://docs.microsoft.com/en-us/
aspnet/core/blazor/fundamentals/routing.

The Blazor Server project also contains a Host.cshtml file that serves as the main entry
point for the application. In a typical client-based SPA framework, the _Host.cshtml
file represents the Index.html file, where the main App component is being referenced
and bootstrapped. In this file, you can see that the App.razor component is being called
within the <body> section of the HTML document, as shown in the following code
block:

<body>

 <app>

 <component type=”typeof(App)”
 render-mode=”ServerPrerendered” />

 </app>

 @*Removed other code for brevity*@

</body>

The preceding code renders the App.razor component with ServerPrerendered as
the default rendering mode. This mode tells the framework to render the component in
static HTML first and then bootstrap the app when the browser starts.

https://docs.microsoft.com/en-us/aspnet/core/blazor/fundamentals/routing
https://docs.microsoft.com/en-us/aspnet/core/blazor/fundamentals/routing

232 Exploring the Blazor Web Framework

Creating the model
The first thing that we are going to do in this project is to create a class that will contain
some properties that match with what we expect from the web API response. Let’s go
ahead and create a new class called Place.cs under the Data folder. The class definition
should look like the following:

using System;

using System.ComponentModel.DataAnnotations;

namespace BlazorServer.Web.Data

{

 public class Place

 {

 public int Id { get; set; }

 [Required] public string Name { get; set; }

 [Required] public string Location { get; set; }

 [Required] public string About { get; set; }

 public int Reviews { get; set; }

 public string ImageData { get; set; }

 public DateTime LastUpdated { get; set; }

 }

}

As you will observe, the preceding code is identical to the Place class that we’ve
created in the web API project, except that we’ve used data annotation to decorate a few
properties with the [Required] attribute. We are going to populate these properties
with the result from the web API and use it in the Blazor components to display
information. The required properties ensure that these fields will not be empty when
updating the form. We are going to see how this is done later in this chapter.

Implementing a service for web API communication
Now that we have our Model in place, let’s implement a service for invoking a couple
of web API endpoints to fetch and update data. First, install the Microsoft.
AspNetCore.SignalR.Client NuGet package in order for us to be able to connect
to Hub and listen to an event.

Creating the Blazor Server project 233

After installing the SignalR client package, create a new class called PlaceService.cs
under the Data folder and copy the following code:

public class PlaceService

{

 private readonly HttpClient _httpClient;

 private HubConnection _hubConnection;

 public PlaceService(HttpClient httpClient)

 {

 _httpClient = httpClient;

 }

 public string NewPlaceName { get; set; }

 public int NewPlaceId { get; set; }

 public event Action OnChange;

}

The preceding code defines a couple of private fields for HttpClient and
HubConnection. We’ll use these fields later to invoke methods. The PlaceService
constructor takes an HttpClient object as a dependency to the class and assigns the
_httpClient field. At runtime, the HttpClient object will be resolved by the DI
container.

The NewPlaceName and NewPlaceId properties will be populated once the application
receives the newly added record from Hub. The OnChange event is a special type of
delegate in C# that allows you to subscribe to it when a certain action raises the event.

Now, let’s implement the SignalR configuration for subscribing to Hub. Go ahead and
append the following code within the PlaceService class:

public async Task InitializeSignalR()

{

 _hubConnection = new HubConnectionBuilder()

 .WithUrl($”{_httpClient.BaseAddress.AbsoluteUri}
 PlaceApiHub”)

 .Build();

 _hubConnection.On<int, string>(“NotifyNewPlaceAdded”,
 (placeId, placeName) =>

234 Exploring the Blazor Web Framework

 {

 UpdateUIState(placeId, placeName);

 });

 await _hubConnection.StartAsync();

}

public void UpdateUIState(int placeId, string placeName)

{

 NewPlaceId = placeId;

 NewPlaceName = placeName;

 NotifyStateChanged();

}

private void NotifyStateChanged() => OnChange?.Invoke();

The InitializeSignalR() method is responsible for creating a connection to
Hub by setting the HubConnection.WithUrl() method. We’ve used the value
of _httpClient.BaseAddress.AbsoluteUri to avoid hardcoding the base
URL of the web API endpoint. We’ll configure the base URL later when we register
the PlaceService class with the typed instance of HttpClient. The value of
the WithUrl parameter is actually equivalent to https://localhost:44332/
PlaceApiHub. If you recall, the /PlaceApiHub URL segment is the Hub route that
we configured earlier when we created the API project. In the next line, we’ve used the
On method of HubConnection to listen to the NotifyNewPlaceAdded event. When
a server broadcasts data to this event, UpdateUIState() will be invoked, which sets
the NewPlaceId and NewPlaceName properties and then ultimately invokes the
NotifyStateChanged() method to trigger the OnChange event.

Next, let’s implement the methods for connecting to the web API endpoints. Append the
following code:

public async Task<IEnumerable<Place>> GetPlacesAsync()

{

 var response = await _httpClient.GetAsync(“/api/places”);

 response.EnsureSuccessStatusCode();

 var json = await response.Content.ReadAsStringAsync();

Creating the Blazor Server project 235

 var jsonOption = new JsonSerializerOptions

 {

 PropertyNameCaseInsensitive = true

 };

 var data = JsonSerializer.
 Deserialize<IEnumerable<Place>>(json, jsonOption);

 return data;

}

public async Task UpdatePlaceAsync(Place place)

{

 var response = await _httpClient.PutAsJsonAsync(
 “/api/places”, place);

 response.EnsureSuccessStatusCode();

}

The GetPlacesAsync() method calls the /api/places HTTP GET endpoint
to fetch data. Notice that we are passing JsonSerializerOptions with
PropertyNameCaseInsensitive set to true when deserializing the result to a
Place model. This is to correctly map the properties in the Place model because the
default JSON response from the API call is in camel case format. Without setting this
option, you will not be able to populate the Place model properties with data because
the format is in Pascal case.

The UpdatePlaceAsync() method is very straightforward. It takes a Place
model as a parameter and then calls the API to save the changes to the database. The
EnsureSuccessStatusCode() method call will throw an exception if the HTTP
response was unsuccessful.

Next, add the following entry to the appSettings.json file:

“PlaceApiBaseUrl”: “https://localhost:44332”

Defining common configuration values within appSettings.json is a good practice
to avoid hardcoding any static values in your C# code.

236 Exploring the Blazor Web Framework

Note: The ASP.NET Core project template will generate both appSettings.json and
appSettings.Development.json files. If you are deploying your application in
different environments, you can take advantage of the configuration and create specific
configuration files targeting each environment. For local development, you can put all
your local configuration values in the appSettings.Development.json file and the
common configurations in the appSettings.json file. At runtime, and depending
on which environment your application is running, the framework will automatically
override whatever values you configured in the appSettings.json file with the values
you configured in your environment-specific configuration file. For more information,
check out the Further reading section of this chapter.

The final step for this to work is to register PlaceService in IServiceCollection.
Go ahead and add the following code to the ConfigureServices() method of the
Startup class:

services.AddHttpClient<PlaceService>(client =>

{

 client.BaseAddress = new
Uri(Configuration[“PlaceApiBaseUrl”]);

});

The preceding code registers a typed instance of HttpClientFactory in the DI
container. Notice that the BaseAddress value is being pulled from appSettings.
json via the Configuration object.

Implementing the application state
Blazor applications are made up of components and, in order to effectively communicate
between the changes that are happening in dependent components, we need to implement
some sort of state container to keep track of the changes. Create a new class called
AppState.cs under the Data folder and copy the following code:

public class AppState

{

 public Place Place { get; private set; }

 public event Action OnChange;

 public void SetAppState(Place place)

 {

 Place = place;

 NotifyStateChanged();

Creating the Blazor Server project 237

 }

 private void NotifyStateChanged() => OnChange?.Invoke();

}

The preceding code consist of a property, an event, and methods. The Place property is
used to hold the current Place model that has been modified. The OnChange event is
used to trigger some logic when the application state has changed. The SetAppState()
method handles the current state of the component. This is where we set the properties to
keep track of the change and call the NotifyStateChanged() method to invoke the
OnChanged event.

The next step is to register the AppState class as a service so that we can inject it into
any component. Go ahead and add the following code to the ConfigureServices()
method of the Startup class:

public void ConfigureServices(IServiceCollection services)

{

 services.AddScoped<AppState>();

 //removed other services for brevity

}

The preceding code registers the AppState class as a scoped service in the DI container
because we wanted an instance of this service to be created for each web request.

At this point, we now have what we need to build the UIs: a service to consume data and a
service to keep track of the component state. Now, let’s move on to the next step and start
building the UIs for the application.

Creating Razor components
We are going to split the page implementation into components. With that said, we are
now going to create the following Razor components:

•	 Main.razor

•	 ViewTouristSpot.razor

•	 EditTouristSpot.razor

238 Exploring the Blazor Web Framework

The following diagram shows a graphical representation of how we are going to lay out
our web page:

Figure 6.4 – The Main layout

The Main.razor component will contain three main sections for displaying various
data representations. These sections are just <div> elements in the component. Under
Featured Section, we will render the ViewTouristSpot.razor component as
a child to the Main.razor component. ViewTouristSpot.razor will contain
EditTouristSpot.razor as a child component.

Now that you already have an idea of how the page is going to look, let’s start building the
required components.

Composing the EditTouristSpot component
Let’s start creating the inner child component. Create a new folder called Spots under the
Pages folder. Right-click on the Place folder and then select Add | Razor Component.
A window dialog should appear for you to name the component. In this example, just set
the name to EditTouristSpot.razor and then click Add. Delete the generated code
because we are going to replace it with our code implementation.

Creating the Blazor Server project 239

A Razor component is typically divided into three main parts:

•	 The first part is for declaring class and service references that are required in order
for us to invoke methods and members.

•	 The second part is for constructing the actual UI using Razor syntax by combining
HTML, CSS, and C#.

•	 The third part is for handling any user interaction logic contained within the @
code{} block.

Here’s a quick summary of a typical component composition:

@*Routing, Namespace, Class and Service references goes here*@

@*HTML generation and UI construction goes here*@

@*UI logic and C# code block goes here*@

Let’s start integrating the first part. Add the following code:

@using BlazorServer.Web.Data

@inject PlaceService _placeService

@inject AppState _appState

The preceding code uses the @using and @inject Razor directives to reference a
server-side class and service within the Blazor component. This enables us to access
members and methods that are available. For this specific example, declaring the @using
BlazorServer.Web.Data reference allow us to access the Place class defined
within that namespace. The same goes for the @inject directive. When injecting the
AppState and PlaceService services, it allows us to access all the methods that they
expose within the markup.

Now, let’s integrate the second part. Append the following code:

@if (IsReadOnlyMode)

{

 <ViewTouristSpot Place=”Place” />

}

else

{

 <EditForm Model=”@Place” OnValidSubmit=”HandleValidSubmit”>

240 Exploring the Blazor Web Framework

 <div class=”card”>

 <div class=”card-body”>

 <DataAnnotationsValidator />

 <ValidationSummary />

 Name:

 <InputText class=”form-control”

 @bind-Value=”Place.Name” />

 Location:

 <InputText class=”form-control”

 @bind-Value=”Place.Location” />

 About:

 <InputTextArea class=”form-control”

 @bind-Value=”Place.About” />

 <button type=”submit” class=”btn btn-outline-
 primary”>Save</button>

 <button type=”button” class=”btn btn-outline-
 primary” @onclick=”UndoChanges”>Cancel
 </button>

 </div>

 </div>

 </EditForm>

}

The preceding code is referred to as a Razor code block. Razor code blocks normally
start with the @ symbol and are enclosed by curly braces, {}. The if-else statement
determines which HTML block to render in the browser based on the IsReadOnlyMode
Boolean property defined within the @code section. By default, it’s set to false, so the
HTML block within the else part gets evaluated and displays the edit form. Otherwise, it
renders the ViewTouristSpot.razor component to turn the display back into a read-
only state.

Creating the Blazor Server project 241

In the read-only state, we’ve passed the Place object as a parameter to the
ViewTouristSpot component so it can display the data without re-invoking the
API. Keep in mind that the ViewTouristSpot component doesn’t yet exist and we
are going to create it in the next section. In the edit state, we’ve used the EditForm
component to take advantage of its built-in features and form validations. The
EditForm component takes a model to be validated. In this case, we’ve passed the
Place object as the model and wired up the HandleValidSubmit() method to
the OnValidSubmit event handler. We have also used various built-in components,
such as DataAnnotationsValidator, ValidationSummary, InputText,
and InputTextArea to handle input validations and model property bindings. In
this example, we are using two-way data binding to bind the Place properties to input
elements using the @bind-Value attribute. The EditForm component will render
as an HTML <form> element in the browser and submit all form values when an
HTML <input> of type=”submit” is clicked. When the Save button is clicked,
this triggers the DataAnnotationsValidator component and checks whether all
validations are passed. If you recall, in the Creating the model section of this chapter,
we only validated the Name, Location, and About properties to be required, and the
HandleValidSubmit() method won’t be triggered if any of those properties are left
empty.

The form uses Boostrap 4 CSS classes to define the look and feel of the component.
Bootstrap is part of the default template when creating any ASP.NET Core web
frameworks and you can see that the CSS file sits under the wwwroot/css/bootstrap
folder.

Now, let’s integrate the last part of this component. Append the following code:

@code {

 [Parameter] public Place Place { get; set; }

 private Place PlaceCopy { get; set; }

 bool IsReadOnlyMode { get; set; } = false;

}

The preceding code is referred to as a C# code block. The @code directive is unique to
.razor files, and allows you to add C# methods, properties, and fields to a component.
You can think of the code block as a code-behind file (cshtml.cs) in Razor Pages or
a Controller class in MVC, where you can implement C# code logic based on UI
interactions.

242 Exploring the Blazor Web Framework

The Place property is decorated with the [Parameter] attribute with a public access
modifier to allow the parent component to set a value to this property. The PlaceCopy
property is a holder property that contains the original values being passed from the
parent component. In this case, the parent component is ViewTouristSpot.razor.
The IsReadOnlyMode property is a Boolean flag used to determine which HTML block
to render.

Let’s continue by implementing the methods that are needed for this component. Append
the following code within the @code{} block:

protected override void OnInitialized()

{

 PlaceCopy = new Place

 {

 Id = Place.Id,

 Name = Place.Name,

 Location = Place.Location,

 About = Place.About,

 Reviews = Place.Reviews,

 ImageData = Place.ImageData,

 LastUpdated = Place.LastUpdated

 };

}

The OnInitialized() method is part of the Blazor framework, which allow us to
override it to perform certain operations. This method is triggered during component
initialization and is a perfect place to configure object initialization and assignments.
As you will notice, this is where we assign the property values from the original Place
model to a new Place object called PlaceCopy. The main reason why we keep the
original state of the Place object is because we wanted to reset the data to its default state
when cancelling the edit. We could have just set the IsReadOnlyMode flag to true for
the cancel action. However, doing this alone would not reset the values to the original
state when switching back to the read-only state. The reason for this is that we were using
two-way data binding for our Place model, and any property changes made to the form
will be kept.

Creating the Blazor Server project 243

The process of two-way data binding works like this:

•	 The input elements in the UI automatically reflect the changes when properties in
the Place model get updated from the server.

•	 When UI elements get updated, the changes get propagated back to the Place
model as well.

If you don’t want to keep an original state of the Place model, you can inject the
NavigationManager class and then simply redirect to the Main.razor component
using the following code:

NavigationManager.NavigateTo(“/main”, true);

The preceding code is the quickest and easiest way to switch to the read-only state.
However, doing this would cause the page to reload and invoke the API again to fetch the
data, which can be expensive.

Let’s move on and append the following code within the @code{} block:

private void NotifyStateChange(Place place)

{

 _appState.SetAppState(place);

}

The NotifyStateChange() method takes a Place model as an argument. This
is where we invoke the SetAppState() method of AppState to notify the main
component of the change. This way, when we modify the form or perform an update, the
main component can perform certain actions to act on it; for example, refreshing the data
or updating some UI in the main component.

Next, append the following code within the @code{} block:

protected async Task HandleValidSubmit()

{

 await _placeService.UpdatePlaceAsync(Place);

 IsReadOnlyMode = true;

 NotifyStateChange(Place);

}

244 Exploring the Blazor Web Framework

The HandleValidSubmit() method in the preceding code will be triggered when
clicking the Save button and when no model validation error occurred. This method calls
the UpdatePlaceAsync() method of PlaceService and invokes the API to update
a Place record.

Finally, append the following code within the @code{} block:

private void UndoChanges()

{

 IsReadOnlyMode = true;

 if (Place.Name.Trim() != PlaceCopy.Name.Trim() ||

 Place.Location.Trim() != PlaceCopy.Location.Trim() ||

 Place.About.Trim() != PlaceCopy.About.Trim())

 {

 Place = PlaceCopy;

 NotifyStateChange(PlaceCopy);

 }

}

The UndoChanges() method in the preceding code will be triggered when clicking the
Cancel button. This is where we revert back to the values from the PlaceCopy object
when any of the Place properties have been modified.

Let’s move on to the next step and create the ViewTouristSpot component for
displaying a read-only state of data.

Composing the ViewTouristSpot component
Go ahead and create a new Razor component within the Spots folder and name it
ViewTouristSpot.razor. Replace the code generated so that it will look like the
following:

@using BlazorServer.Web.Data

@if (IsEdit)

{

 <EditTouristSpot Place=”Place” />

}

else

{

Creating the Blazor Server project 245

 <div class=”card”>

 <img class=”card-img-top” src=”@Place.ImageData”
alt=”Card image cap”>

 <div class=”card-body”>

 <h5 class=”card-title”>@Place.Name</h5>

 <h6 class=”card-subtitle mb-2 text-muted”>

 Location: @Place.Location

 Reviews: @Place.Reviews

 Last Updated: @Place.LastUpdated.
 ToShortDateString()

 </h6>

 <p class=”card-text”>@Place.About</p>

 <button type=”button” class=”btn btn-outline-
 primary”

 @onclick=”(() => IsEdit = true)”>

 Edit

 </button>

 </div>

 </div>

}

@code {

 [Parameter] public Place Place { get; set; }

 bool IsEdit { get; set; } = false;

}

There really isn’t much going on in the preceding code. Since this component is
meant to be a read-only view, there’s really no complex logic here. Just like in the
EditTouristSpot.razor file, we also implemented an if-else statement to
determine which HTML block to render. In the @code section, we only have two
properties; the Place property is used to pass the model to the EditTouristSpot
component. The IsEdit Boolean property is used as a flag to render HTML. We only set
this property to true when clicking the Edit button.

246 Exploring the Blazor Web Framework

Composing the Main component
Now that we are already familiar with the components for editing and viewing data, the
last thing that we need to do is to create the main component to contain them in a single
page. Let’s go ahead and create a new Razor component under the Pages folder and
name it Main.razor. Now, replace the generated code with the following:

@page “/main”

@using BlazorServer.Web.Data

@using BlazorServer.Web.Pages.Spots

@inject PlaceService _placeService

@inject AppState _appState

@implements IDisposable

The preceding code defines a new route using the @page directive. At runtime, the
/main route will be added to the route data collection, enabling you to navigate to this
route and render its associated components. We’ve used the @using directive to reference
a class from the server and used the @inject directive to reference a service. We also
used the @implements directive to implement a disposable component. We’ll see how
this is used later.

Now, let’s continue composing our main component. Append the following code:

@if (Places == null)

{

 <p>Loading...</p>

}

else

{

 <div class=”container”>

 <div class=”row”>

 <div class=”col-8”>

 <h3>Featured Tourist Spot</h3>

 <ViewTouristSpot Place=”Place” />

 </div>

 <div class=”col-4”>

 <div class=”row”>

 <h3>What’s New?</h3>

 <div class=”card” style=”width: 18rem;”>

 <div class=”card-body”>

Creating the Blazor Server project 247

 <h5 class=”card-title”>@_
 placeService.NewPlaceName</h5>

 </div>

 </div>

 </div>

 <div class=”row”>

 <h3>Top Places</h3>

 <div class=”card” style=”width: 18rem;”>

 <div class=”card-body”>

 @foreach (var place in Places)

 {

 <a href=”
 javascript:void(0)”

 @onclick=”(() =>
 ViewDetails(
 place.Id))”>

 @place.Name

 }

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

}

248 Exploring the Blazor Web Framework

The preceding code is responsible for rendering HTML. Once again, we’ve used
Bootstrap CSS to set up the layout. The layout is basically composed of two columns’
<div> elements. In the first column, we render the ViewTouristSpot component
and pass the Place model as the parameter to the component. We are going to see how
the model is populated in the next section. The second column renders two rows. The
first row displays the NewPlaceName property from PlaceService, and the second
column displays the list of places presented using the HTML element. Within
the tag, we’ve used the @ symbol to start manipulating the data in C# code. The
foreach keyword is one of the C# reserved keywords, which is used for iterating data in
a collection. Within the foreach block, we have constructed the items to be displayed
in the tag. In this case, the Name property of the Place model is rendered using
implicit expressions.

To complete the Main.razor component, let’s implement the server-side logic to handle
user interactions and application states. Go ahead and append the following code:

@code {

 private IEnumerable<Place> Places;

 public Place Place { get; set; }

}

The preceding code defines two properties for storing the list of places and the current
place being viewed.

Next, append the following code within the @code{} block:

protected override async Task OnInitializedAsync()

{

 await _placeService.InitializeSignalR();

 Places = await _placeService.GetPlacesAsync();

 Place = Places.FirstOrDefault();

 _placeService.NewPlaceName = Place.Name;

 _placeService.NewPlaceId = Place.Id;

 _placeService.OnChange += HandleNewPlaceAdded;

 _appState.OnChange += HandleStateChange;

}

Creating the Blazor Server project 249

In the OnInitializedAsync() method, we’ve invoked the InitializeSignalR()
method of PlaceService to configure the SignalR and Hub connections. We’ve also
populated each property in the component. The Places property contains the data
from the GetPlacesAsync() method call. Under the hood, this method invokes an
API call to fetch data. The Places property is used to display the list of places in the
Top Places section. The Place property, on the other hand, contains the first result from
the Places collection and is used for displaying the data in the ViewTouristSpot
component. We also set the NewPlaceName and NewPlaceId properties of
PlaceService so that we will have a default display for the What’s new section. We’ve
also wired up both OnChange events from the PlaceService and AppState services
to each corresponding method.

Next, append the following code within the @code{} block:

private async void HandleNewPlaceAdded()

{

 Places = await _placeService.GetPlacesAsync();

 StateHasChanged();

}

The HandleNewPlaceAdded() method will be invoked when a server sends the event
to Hub. This process is done when a new record is added via an API POST request. This
method is responsible for updating the data in the component to reflect the new record in
real time.

Next, append the following code within the @code{} block:

private async void HandleStateChange()

{

 Places = await _placeService.GetPlacesAsync();

 Place = _appState.Place;

 if (_placeService.NewPlaceId == _appState.Place.Id)

 {

 _placeService.NewPlaceName = _appState.Place.Name;

 }

 StateHasChanged();

}

250 Exploring the Blazor Web Framework

The HandleStateChange() method in the preceding code is responsible for keeping
the Models state up to date. You can see in this method that we are repopulating the
Places, Place, and NewPlaceName properties when the state has been changed. Note
that we are only updating the NewPlaceName value if NewPlaceId matches the Place
records that are being modified. This is because we don’t want to change this value when
we are editing a record that is not new. The StateHasChanged() call is responsible for
re-rendering the component with the new state.

Next, append the following code within the @code{} block:

private void ViewDetails(int id)

{

 Place = Places.FirstOrDefault(o => o.Id.Equals(id));

}

The ViewDetails() method in the preceding code takes an integer as a parameter. This
method is responsible for updating the current Place model based on Id.

Finally, append the following code within the @code{} block:

public void Dispose()

{

 _appState.OnChange -= StateHasChanged;

 _placeService.OnChange -= StateHasChanged;

}

In the preceding code, we will unsubscribed to the OnChange event when the
Dispose() method is invoked. The Dispose() method is automatically called when
the component is removed from the UI. It is very important to always unhook the
component’s StateHasChanged method from the OnChange event to avoid potential
memory leaks.

Updating the NavMenu component
Now, let’s add the /main route to the existing navigation component. Go ahead and open
the NavMenu.razor file, which resides under the Shared folder. Append the following
code within the element:

<li class=”nav-item px-3”>

 <NavLink class=”nav-link” href=”main”>

 Tourist Spots

Creating the Blazor Server project 251

 </NavLink>

The preceding code adds a Tourist Spots link from the existing menu. This enable us to
easily navigate to the main component page without having to manually type the route in
the browser.

Running the application
One of the many great features built into Visual Studio is that it provides a capability for
us to run multiple projects simultaneously in our local machine. Without this feature, we
would have to deploy all applications in a web server where each of them can talk to one
another. Otherwise, our Blazor web applications won’t be able to connect to the web API.

To run multiple projects at the same time in Visual Studio, perform the following steps:

1.	 Right-click on the Solution project and then select Set startup projects.

2.	 Select the Multiple startup projects radio button, as shown in the following
screenshot:

Figure 6.5 – Setting multiple startup projects

3.	 Select Start as the action for both projects.

4.	 Click Apply and then OK.

252 Exploring the Blazor Web Framework

Now, build and run the application using Ctrl + F5. From the navigation sidebar menu,
click the Tourist Spots link and the Main component page should display just like in the
following screenshot:

Figure 6.6 – The main page

Clicking the Edit button will display the EditTouristSpot component, as shown in
the following screenshot:

Creating the Blazor Server project 253

Figure 6.7 – The main page showing edit mode

In the preceding screenshot, the Name property was modified. Clicking the Cancel button
will discard the changes and bring you back to the default view. Clicking Save will update
the record in our in-memory database, update the state, and reflect the changes to the
Main component, as shown in the following screenshot:

Figure 6.8 – The main page showing readonly mode

254 Exploring the Blazor Web Framework

You can also select any items from the Top Places section, and this should bring up the
corresponding details on the page. For example, clicking on the Oslob Cebu item will
update the page to the following:

Figure 6.9 – The main page showing readonly mode

Notice that all the details information has been updated except for the What’s New?
section. This was intentional because we only want to update it when there’s a new record
posted in the database. We are going to see how this section will be updated in the next
section.

If you’ve made it this far, congratulations! You just had your first Blazor web application
running with live data connected to an API! Now, let’s continue the fun and create a
Blazor WebAssembly WASM (app) where we can submit new tourist spot records and
reflect the changes in the Blazor Server app in real time.

Creating the Blazor Web Assembly project 255

Creating the Blazor Web Assembly project
In the previous project, we learned how to create a web app with basic functionalities
such as fetching and updating records via a web API call. In this project, we will build
the frontend Progressive Web Application (PWA) to create a new record. This process
is executed by invoking an API endpoint to post data and sends an event to Hub to
automatically update the Blazor Server UI in real time when a new record is submitted.

Here’s an attempt showing how the process works:

Figure 6.10 – Real-time data update flow

The preceding diagram shows the high-level process of how the real-time functionality
works. The steps are pretty much self-explanatory, and it should give you a better
understanding of how each application connects to one another. Without further ado, let’s
start building the last project to complete the whole application.

Go ahead and add a new Blazor WebAssembly project within the existing project
solution. To do this, just right-click on Solution and then select Add | New Project. In
the window dialog, select Blazor App and then click Next. Set the name of the project to
BlazorWasm.PWA and then click Create.

256 Exploring the Blazor Web Framework

In the next dialog, select Blazor WebAssembly App and then check the Progressive Web
Application checkbox, as shown in the following screenshot:

Figure 6.11 – Creating a new Blazor WASM project

Click Create to let Visual Studio generate the default template.

The project structure of the Blazor WebAssembly project is somewhat similar to Blazor
Server except for the following:

•	 It doesn’t have a Startup.cs file. This is because a Blazor WASM project is
configured differently and uses its own host to run the application.

•	 The Progam.cs file now contains the following code:

public static async Task Main(string[] args)

{

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<App>(“app”);

 builder.Services.AddTransient(sp => new HttpClient {
BaseAddress = new Uri(builder.HostEnvironment.BaseAddress) });

 await builder.Build().RunAsync();

}

Creating the Blazor Web Assembly project 257

In the preceding code, we can see that it uses WebAssemblyHostBuilder
instead of using the typical ASP.NET Core IHostBuilder to configure
a web Host. It also configures HttpClient with BaseAddress set to
HostEnvironment.BaseAddress, which is the host address where the
application itself is running, for example, localhost:<port>.

•	 It doesn’t have the _Host.chtml file in the Pages folder. If you recall, in the Blazor
Server project, the _Host.chtml file is the main entry point for the application
where it bootstraps the App.razor component. In Blazor WASM, App.razor is
added to the application start instead, as you can see in the Program.cs file.

•	 It doesn’t have the Data folder where it configures sample data for the default
Weatherforecast service. The sample data is now moved to the weather.
json file under the wwwroot/sample-data folder.

•	 A few other new files have been added to wwwroot as well, such as index.
html, manifest.json, and service-worker.js. index.html is the one
that actually replaces the _Host.chtml file, which contains the main HTML
document for the application. You can see that this file contains the <head> and
<body> tags, as well as rendering the <app> component, CSS, and the JavaScript
framework. The manifest.json and service-worker.js files enable the
Blazor WASM app to turn into a PWA.

I am pretty sure that there are many other differences between Blazor Server and
WebAssembly, but the items highlighted in the list are the key differences.

Creating the model
Now, let’s start adding the feature we need for this project. Create a new folder
called Dto in the project root. Within the Dto folder, add a new class called
CreatePlaceRequest.cs and copy the following code:

using System.ComponentModel.DataAnnotations;

namespace BlazorWasm.PWA.Dto

{

 public class CreatePlaceRequest

 {

 [Required]

 public string Name { get; set; }

 [Required]

 public string Location { get; set; }

258 Exploring the Blazor Web Framework

 [Required]

 public string About { get; set; }

 [Required]

 public int Reviews { get; set; }

 public string ImageData { get; set; }

 }

}

The preceding code defines a class that houses some properties. Notice that the class
resembles the Place class from the web API, except that we’ve used data annotations by
decorating a few properties with the [Required] attribute. This attribute ensures that
the properties will not be posted to the database if they are left empty.

Let’s move on to the next step and create the component for adding new records to the
database.

Composing the Index component
Now, navigate to the Index.razor component. Delete the existing code within it and
add the following code:

@page “/”

@using Dto

@inject HttpClient client

The preceding code sets the route to the root using the @page directive. The next line
declares a reference to the C# namespace using the @using directive. We are going to use
the Dto namespace to access a class and populate the component with values from the
properties in the class. The last line injects an HttpClient object for us to communicate
with the web API.

Next, append the following code block:

<h1>Submit a new Tourist Destination Spot</h1>

<EditForm Model=”@NewPlace” OnValidSubmit=”HandleValidSubmit”>

 <div class=”card” style=”width: 30rem;”>

 <div class=”card-body”>

 <DataAnnotationsValidator />

 <ValidationSummary />

 Browse Image:

Creating the Blazor Web Assembly project 259

 <InputFile OnChange=”HandleSelection” />

 <p class=”alert-danger”>@errorMessage</p>

 <p>@status</p>

 <p>

 <img src=”@imageData” style=”width:300px;
 height:200px;”>

 </p>

 Name:

 <InputText class=”form-control” id=”name” @bind-
 Value=”NewPlace.Name” />

 Location:

 <InputText class=”form-control” id=”location” @
 bind-Value=”NewPlace.Location” />

 About:

 <InputTextArea class=”form-control” id=”about” @
 bind-Value=”NewPlace.About” />

 Review:

 <InputNumber class=”form-control” id=”review” @
 bind-Value=”NewPlace.Reviews” />

 <button type=”submit” class=”btn btn-outline-
 primary oi-align-right”>Post</button>

 </div>

 </div>

</EditForm>

The preceding code is the HTML code that renders the form with input elements and
a button to upload an image. It also uses an EditForm component to handle form
submission and model validations. We’re not going to elaborate on how the code works
because we’ve already covered this in the previous section when we built the components
for the Blazor Server project.

260 Exploring the Blazor Web Framework

In this example, we are using the InputFile Blazor component to upload an image
and configure the OnChange event that is wired to the HandleSelection method.
By default, the InputFile component only allows single-file selection. To support
multiple-file selection and uploading, set the multiple attribute just like in the
following code snippet:

<InputFile OnChange=”HandleSelection” multiple />

For more information about the InputFile component, check out the Further reading
section of this chapter.

Let’s continue by implementing the server-side code logic. Append the following code:

@code {

 string status;

 string imageData;

 string errorMessage;

}

The preceding code defines a few private fields that are required in the component UI. The
status field is a variable for storing the uploaded status text. imageData is for storing
the encodedimage data, and errorMessage is for storing the error text.

Next, append the following code within the @code{} block:

async Task HandleSelection(InputFileChangeEventArgs e)

{

 errorMessage = string.Empty;

 int maxFileSize = 2 * 1024 * 1024;

 var acceptedFileTypes = new List<string>() { “image/png”,
 “image/jpeg”, “image/gif” };

 var file = e.File;

 if (file != null)

 {

 if (!acceptedFileTypes.Contains(file.ContentType))

 {

 errorMessage = “File is invalid.”;

 return;

 }

Creating the Blazor Web Assembly project 261

 if (file.Size > maxFileSize)

 {

 errorMessage = “File size exceeds 2MB”;

 return;

 }

 var buffer = new byte[file.Size];

 await file.OpenReadStream().ReadAsync(buffer);

 status = $”Finished loading {file.Size} bytes from
 {file.Name}”;

 imageData = $”data:{file.ContentType};base64,{Convert.
 ToBase64String(buffer)}”;

 }

}

The HandleSelection() method in the preceding code takes
InputFileChangeEventArgs as the parameter. In this method, we only allow a single
file to be uploaded instead of multiple files by reading the e.File property. If you accept
multiple files, then use the e.GetMultipleFiles() method instead. We also defined
a couple of pre-validation values for the maximum file size and file types. In this example,
we only allow 2 MB as the maximum file size and only accept .PNG, .JPEG, and .GIF file
types to be uploaded. We then perform some validation checks and display an error if any
condition is not met. If all conditions are met, we copy the file being uploaded in a stream
and convert the resulting bytes into Base64String so we can set the image data to an
 HTML element.

Now, append the following code within the @code{} block:

private CreatePlaceRequest NewPlace = new CreatePlaceRequest();

async Task HandleValidSubmit()

{

 NewPlace.ImageData = imageData;

 var result = await client.PostAsJsonAsync(
 “https://localhost:44332/api/places”, NewPlace);

}

262 Exploring the Blazor Web Framework

The HandleValidSubmit() method in the preceding code will be invoked when
clicking the Post button and if no model validation errors occurred. This method takes
the NewPlace object and passes it the API call to perform HTTP POST.

That’s it! Now, let’s try to run the application.

Running the application
Now, include the Blazor WASM project as a startup project and then click Ctrl + F5 to
run the application. You should see three browser tabs running each application. You can
minimize the tab that runs the web API because we don’t need to do anything with it.
Now, look for the Blazor WASM tab.

To turn the Blazor WebAssembly page into a PWA, you simply click the + sign located in
the browser navigation bar, as shown in the following screenshot:

Figure 6.12 – Blazor WASM

Clicking the + sign will prompt a dialog asking you whether you want to install Blazor as a
standalone app on your desktop or mobile device, as shown in the following screenshot:

Figure 6.13 – Installing Blazor WASM as a PWA

Creating the Blazor Web Assembly project 263

Clicking Install will create an icon on your desktop or mobile device as if it’s a regular
native app that has been installed and turns the web page into a window without the URL
bar, like this:

Figure 6.14 – Blazor WASM as a PWA

Pretty cool!

Now, open both the Blazor Server app and Blazor PWA app side by side so you’ll see how
a real-time update works:

Figure 6.15 – Blazor Server and PWA side by side

264 Exploring the Blazor Web Framework

Now, browse an image and enter the required fields to submit a new Place record. When
you click Submit, you’ll notice in the Blazor Server app (the right-hand window in the
preceding screenshot) that the What’s New? and Top Places sections are automatically
updated with the newly added Place name without you having to refresh the page. Here’s
an example of what it looks like:

Figure 6.16 – Blazor Server and PWA real-time communication

In the preceding screenshot, the Grand Canyon name automatically appears in the Blazor
Server web UI in real time right after clicking the Post button. You can view it live here:

https://github.com/PacktPublishing/ASP.NET-Core-5-for-
Beginners/blob/master/Chapter%2005%20and%2006/Chapter_05_
and_06_Blazor_Examples/TouristSpot/AwesomeBlazor.gif

Uninstalling the PWA app
To completely uninstall the PWA app from your local machine or device, make sure to
exit all the apps that are running in IIS Express. You can access the IIS Express manager in
the bottom-right corner of your Windows machine task bar, as shown here:

https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/blob/master/Chapter%2005%20and%2006/Chapter_05_and_06_Blazor_Examples/TouristSpot/AwesomeBlazor.gif
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/blob/master/Chapter%2005%20and%2006/Chapter_05_and_06_Blazor_Examples/TouristSpot/AwesomeBlazor.gif
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/blob/master/Chapter%2005%20and%2006/Chapter_05_and_06_Blazor_Examples/TouristSpot/AwesomeBlazor.gif

Summary 265

Figure 6.17 – IIS Express manager

After exiting all the apps, you can uninstall the PWA app just like you would normally
uninstall an application on your machine.

Summary
In this chapter, we learned about the different flavors of the Blazor web framework
by doing some hands-on coding. We learned how we can easily build a powerful web
application in Blazor in concert with other ASP.NET Core technology stacks by just
applying our C# skills and without the need to write JavaScript. We saw how we can
easily integrate features and capabilities that are already available in .NET, such as real-
time functionality. We also learned how to perform basic form data bindings, state
management, routing, and how to interact with the backend REST APIs to consume and
pass data. Having to learn these basic concepts and fundamentals is crucial when you will
be building real-world applications.

In the next chapter, you are going to explore web APIs in depth and data access for
working with real databases.

Further reading
•	 Introduction to ASP.NET Core Blazor: https://docs.microsoft.com/

en-us/aspnet/core/blazor

•	 ASP.NET Core Blazor hosting model configuration: https://docs.
microsoft.com/en-us/aspnet/core/blazor/fundamentals/
additional-scenarios

•	 Using multiple environments in ASP.NET Core: https://docs.microsoft.
com/en-us/aspnet/core/fundamentals/environments

•	 Enumerable class: https://docs.microsoft.com/en-us/dotnet/api/
system.linq.enumerable

https://docs.microsoft.com/en-us/aspnet/core/blazor
https://docs.microsoft.com/en-us/aspnet/core/blazor
https://docs.microsoft.com/en-us/aspnet/core/blazor/fundamentals/additional-scenarios
https://docs.microsoft.com/en-us/aspnet/core/blazor/fundamentals/additional-scenarios
https://docs.microsoft.com/en-us/aspnet/core/blazor/fundamentals/additional-scenarios
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable

266 Exploring the Blazor Web Framework

•	 Razor components: https://docs.microsoft.com/en-us/aspnet/
core/blazor/components

•	 Blazor cascading values and parameters: https://docs.microsoft.com/
en-us/aspnet/core/blazor/components/cascading-values-and-
parameters

•	 Blazor life cycle: https://docs.microsoft.com/en-us/aspnet/core/
blazor/components/lifecycle

•	 Blazor routing: https://docs.microsoft.com/en-us/aspnet/core/
blazor/fundamentals/routing

•	 Blazor debugging: https://docs.microsoft.com/en-us/aspnet/core/
blazor/debug

•	 WebAssembly: https://webassembly.org/

•	 Understanding the InputFile component: https://docs.microsoft.
com/en-us/aspnet/core/blazor/file-uploads

https://docs.microsoft.com/en-us/aspnet/core/blazor/components
https://docs.microsoft.com/en-us/aspnet/core/blazor/components
https://docs.microsoft.com/en-us/aspnet/core/blazor/components/cascading-values-and-parameters
https://docs.microsoft.com/en-us/aspnet/core/blazor/components/cascading-values-and-parameters
https://docs.microsoft.com/en-us/aspnet/core/blazor/components/cascading-values-and-parameters
https://docs.microsoft.com/en-us/aspnet/core/blazor/components/lifecycle
https://docs.microsoft.com/en-us/aspnet/core/blazor/components/lifecycle
https://docs.microsoft.com/en-us/aspnet/core/blazor/fundamentals/routing
https://docs.microsoft.com/en-us/aspnet/core/blazor/fundamentals/routing
https://docs.microsoft.com/en-us/aspnet/core/blazor/debug
https://docs.microsoft.com/en-us/aspnet/core/blazor/debug
https://webassembly.org/
https://docs.microsoft.com/en-us/aspnet/core/blazor/file-uploads
https://docs.microsoft.com/en-us/aspnet/core/blazor/file-uploads

7
APIs and Data

Access
In real-world scenarios, whether it’s a mobile app, desktop, service, or web apps, they
heavily rely on Application Programming Interfaces (APIs) to interact with systems
to submit or fetch data. APIs typically act as a gateway between client applications
and a database to perform any data operations between systems. Often, APIs provide
instructions and a specific format to clients on how to interact with the system to perform
data transactions. Thus, APIs and data access work together to achieve two main goals:
serving and taking data.

Here is the list of the main topics that we’ll go through in the chapter:

•	 Understanding what ORM and Entity Framework Core are

•	 Reviewing the different design workflows supported by EF Core

•	 Learning database-first development

•	 Learning code-first development and migrations

268 APIs and Data Access

•	 Learning the basics of LINQ to query data against conceptual models

•	 Reviewing what the ASP.NET Core API is

•	 Building Web APIs that implement the most commonly used HTTP methods for
serving data

•	 Testing APIs with Postman

In this chapter, we are going to learn about the different approaches to working with a
real database in Entity Framework (EF) Core. We will take a look at how to use EF Core
with an existing database, as well as implementing APIs that talk to a real database using
the EF Core code-first approach. We will look into ASP.NET Core Web APIs in concert
with Entity Framework Core to perform data operations in an SQL Server database. We
will also learn how to implement the most commonly used HTTP methods (verbs) for
exposing some API endpoints.

It is important to understand that ASP.NET Core is not only limited to Entity Framework
Core and SQL Server. You can always use whatever data access frameworks you prefer.
For example, you can always use Dapper, NHibernate, or even use the good old plain
ADO.NET as your data access mechanism. You can also use MySQL or Postgres as your
database provider if you’d like.

Technical requirements
This chapter uses Visual Studio 2019 to demonstrate building different applications.
Some of the code snippets demonstrated in this chapter were omitted for brevity. Make
sure to check the source code at https://github.com/PacktPublishing/ASP.
NET-Core-5-for-Beginners/tree/master/Chapter%2007/Chapter_07_
API_EFCore_Examples.

Please visit the following link to check the CiA videos: https://bit.ly/3qDiqYY

A basic understanding of databases, ASP.NET Core, and C# in general, is required because
we’re not going to cover their fundamentals in this chapter.

https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2007/Chapter_07_API_EFCore_Examples
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2007/Chapter_07_API_EFCore_Examples
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2007/Chapter_07_API_EFCore_Examples
https://bit.ly/3qDiqYY

Understanding Entity Framework Core 269

Understanding Entity Framework Core
In the software engineering world, most applications require a database to store data. So,
we all need code to read/write the data stored in a database. Creating and maintaining
code for a database is tedious work and it is a real challenge for us as developers. That’s
where Object Relational Mappers (ORMs) like Entity Framework come into play.

Entity Framework Core is an ORM and a data access technology that enables C#
developers to interact with a database without having to manually write SQL scripts.
ORMs like EF Core help you build data-driven applications quickly by working through
.NET objects instead of interacting directly with the database schema. These .NET objects
are simply classes, which are typically referred to as Entities. With EF Core, C# developers
can take advantage of their existing skills and leverage the power of Language Integrated
Query (LINQ) to manipulate the dataset against the conceptual Entity Models, otherwise
simply referred to as Models. We’ll be using the term models from here on as shown in
Figure 7.1.

Figure 7.1 – EF Core high-level process

The preceding diagram depicts the process of interacting with a database using EF Core.
In the traditional ADO.NET, you would typically write SQL queries by hand to perform
database operations. While performance varies according to how your queries are written,
still, the ADO.NET way brings a performance advantage over ORMs as you can inject
your SQL queries directly into your code and run it against the database. However, this
leads to your code becoming hard to maintain because any SQL query changes will result
in changing your application code as well; with the exception of using stored procedures.
Also, debugging your code can be painful as you will be dealing with a plain string to
write your SQL queries and any typos or syntax errors can be easily overlooked.

With EF Core, you don’t have to worry about writing SQL scripts yourself. Instead, you
will use LINQ to query strongly-typed objects and let the framework handle the rest, such
as generating and executing SQL queries.

Keep in mind that EF Core is not limited to SQL Server databases. The framework
supports various database providers that you can integrate with your application, such as
Postgres, MySQL, SQLite, Cosmos, and many others.

270 APIs and Data Access

Reviewing EF Core design workflows
There are two main design workflows supported by EF Core: the database-first approach
and the code-first approach.

The following Figure 7.2 depicts the difference between the two design workflows:

Figure 7.2 – EF Core design workflows

In the preceding figure, we can see that the database-first workflow begins with an existing
database and EF Core will generate models based on the database schema. The code-first
workflow, on the other hand, begins with writing models and EF Core will generate the
corresponding database schema via EF migrations. Migration is a process that keeps your
models and database schema in sync without losing existing data.

The following table outlines recommendations for which design workflow to consider
when building an application:

Learning database-first development 271

It’s very important to understand the differences between the design workflows so you
know when to apply them to your projects.

Now that you’ve learned the difference between the two design workflows, let’s move on
to the next section and learn how to implement each approach with hands-on coding
exercises.

Learning database-first development
In this section, we will build a .NET Core console application to explore the database-
first approach and see how entity models are created from an existing database (reverse
engineering).

272 APIs and Data Access

Creating a .NET Core console app
To create a new .NET Core console app, follow these steps:

1.	 Open Visual Studio 2019 and select Create a new project.

2.	 Select the Console App (.NET Core) project template.

3.	 Click Next. On the next screen, name the project EFCore_DatabaseFirst.

4.	 Click Create to let Visual Studio generate the default files for you.

Now, we are going to add the required Entity Framework Core packages in our application
for us to work with our existing database using the database-first approach.

Integrating Entity Framework Core
The Entity Framework Core feature was implemented as a separate NuGet package to
allow developers to easily integrate features that the application needs.

As you may have already learned from Chapter 4, Razor View Engine; Chapter 5, Getting
Started with Blazor; and Chapter 6, Exploring Blazor Web Frameworks, there are many
ways to add NuGet package dependencies in Visual Studio; you could either use the
Package Manager Console (PMC) or NuGet Package Manager (NPM). In this exercise,
we are going to use the console.

By default, the PMC window is enabled and you can find it in the bottom-left portion of
Visual Studio.

If, for some reason, you can’t find the PMC window, you can manually navigate to it by
going to the Visual Studio menu under Tools > NuGet Package Manager > Package
Manager Console.

Now, let’s install a few NuGet packages by running the following commands in the console
individually:

PM> Install-Package Microsoft.EntityFrameworkCore.Tools

PM> Install-Package Microsoft.EntityFrameworkCore.SqlServer

PM> Install-Package Microsoft.EntityFrameworkCore.SqlServer.
Design -Pre

The commands in the preceding code will install the NuGet packages as dependencies
in your application. The -Pre command instructs to install the latest preview version
of Entity Framework Core packages. In this case, the current version as of this time of
writing is 5.0.0 for the SQL Server and Tools packages, and 2.0.0-preview1-final for the
SqlServer.Design package.

Learning database-first development 273

Now that we have installed the necessary tools and dependencies for us to work with an
existing database, let’s move on to the next step.

Creating a database
To simulate working with an existing database, we will need to create a database from
scratch. In this example, we will just be creating a single table that houses some simple
columns for simplicity. You can use SQL Server Express if you have it installed or use the
local database built into Visual Studio.

To create a new database in Visual Studio, follow these simple steps:

1.	 Go to View > SQL Server Object Explorer.

2.	 Drill down to SQL Server > (localdb)\MSSQLLocalDB.

3.	 Right-click on the Databases folder.

4.	 Click Add New Database.

5.	 Name it DbFirstDemo and click OK.

6.	 Right-click on the DbFirstDemo database and then select New Query.

7.	 Copy the following SQL script:

CREATE TABLE [dbo].[Person]

(

	 [Id] INT NOT NULL PRIMARY KEY IDENTITY(1,1),

 	[FirstName] NVARCHAR(30) NOT NULL,

 	[LastName] NVARCHAR(30) NOT NULL,

 	[DateOfBirth] DATETIME NOT NULL

)

8.	 Run the script and it should create a new table called Person in your local
database.

Now that we have a database, let’s move on to the next section and create .NET class
objects for us to work with the data using EF Core.

Generating models from an existing database
As of the time of writing, there are two ways to generate models from an existing database.
You can either use PMC or .NET Core Command-Line Interface (CLI) commands. Let’s
see how we can do this in the following section.

274 APIs and Data Access

Using the Scaffold-DbContext command
The first thing that you need to do is to grab the ConnectionString value for you
to connect to the database. You can get this value from the Properties window of the
DbFirstDemo database in Visual Studio.

Now navigate back to the PMC and run the following command to create the
corresponding Models from the existing database:

PM> Scaffold-DbContext “INSERT THE VALUE OF CONNECTION STRING
HERE” Microsoft.EntityFrameworkCore.SqlServer -o Db

The Scaffold-DbContext command in the preceding code is part of the
Microsoft.EntityFrameworkCore.Tools package, which is responsible for the
reverse engineering process. This process will create a DbContext and Model classes
based on the existing database.

We’ve passed in three main parameters in the Scaffold-DbContext command:

•	 Connection string: The first parameter is the connection string that instructs how
to connect to the database.

•	 Provider: The database provider that will be used to execute the connection
string against. In this case, we’ve used Microsoft.EntityFrameworkCore.
SqlServer as the provider.

•	 Output directory: The -o option is shorthand for –OutputDir, which enables
you to specify the location of the files to be generated. In this case, we’ve set it to Db.

Using the dotnet ef dbcontext scaffold command
The second option to generate Models from an existing database is using the EF Core
tools via .NET Core CLI. In order to do this, we need to use the command-line prompt. In
Visual Studio, you can go to Tools > Command Line > Developer Command Prompt.
This process will launch a Command Prompt window at the folder where the solution file
(.sln) is located. Since we need to execute the command at the level where the project
file (.csproj) is located, then we need to move the directory one folder down. So, in
Command Prompt, do the following:

 cd EFCore_DatabaseFirst

The preceding command will set the current directory to where the project file is located.

Learning database-first development 275

Another approach is to navigate to the EFCore_DatabaseFirst folder outside Visual
Studio and then press Shift + Right-click and select Open command window here or
Open PowerShell window here. This process will directly open Command Prompt in the
project file directory.

In Command Prompt, let’s first install the EF Core CLI tools by running the following
command:

Dotnet tool install-–global dotnet-ef

The preceding code will install the EF Core tools globally on your machine. Now, run the
following command:

dotnet ef dbcontext scaffold “INSERT THE VALUE OF CONNECTION
STRING HERE” Microsoft.EntityFrameworkCore.SqlServer -o Db

The preceding code is quite similar to using the Scaffold-DbContext command,
except we’ve used the dotnet ef dbcontext scaffold command, which is specific
to CLI-based EF Core tools.

Both options will give you the same results and will create a DbContext and Model
classes within the Db folder, as shown in Figure 7.3:

Figure 7.3 – EF Core generated files

Take a moment to examine each file generated and see what code is generated.

When you open the DbFirstDemoContext.cs file, you can see that the
class is declared as partial class and it derives from the DbContext class.
DbContext is the main requirement in Entity Framework Core. In this example, the
DbFirstDemoContext class represents the DbContext that manages the connection
with the database and provides various capabilities such as building models, data
mapping, change tracking, database connections, caching, transaction management,
querying, and persisting data.

276 APIs and Data Access

You’ll also see the following code within the DbFirstDemoContext class:

public virtual DbSet<Person> People { get; set; }

The preceding code represents an entity. Entities are defined as the type of DbSet
that represents your model. EF Core requires an Entity so it can read, write, and
migrate data to the database. To put it in simple terms, DbSet<Person> represents
your database table called Person. Now, instead of you writing SQL script to perform
database operations such as insert, update, fetch or delete, you will simply
perform database operations against the DbSet called People and leverage the power of
LINQ to manipulate data with strongly-typed code. This helps you, as a developer, boost
productivity by programming against a conceptual application model with full IntelliSense
support, instead of programming directly against a relational storage schema. Notice how
EF automatically sets the DbSet property name to its plural form. It’s just awesome!

The other thing that you’ll see within the DbFirstDemoContext class is
OnConfiguring(). This method configures the application to use Microsoft SQL
Server as the provider using the UseSqlServer() extension method and passing the
ConnectionString value. In the actual generated code, you will see that the value is
being passed directly to the UseSqlServer() method.

Note
In real-world applications, you should avoid injecting the actual value directly
and instead store your ConnectionString value in a key vault or secrets
manager for security’s sake.

Finally, you will see a method called OnModelCreating() within the
DbFirstDemoContext class. The OnModelCreating() method configures a
ModelBuilder for your Models. The method is defined from the DbContext class
and marked as virtual, allowing us to override its default implementation. You’ll use
this method to configure Model relationships, data annotations, column mappings, data
types, and validations. In this particular example, when EF Core generates the models, it
applies the corresponding configuration that we have in our dbo.Person database table.

Note
Any changes you’ve made to the DbContext class and Entity models will
be lost when running the database-first command again.

Now that we have a DbContext configured, let’s move on to the next section and run
some tests to perform some simple database operations.

Learning database-first development 277

Performing basic database operations
Since this is a console application, we are going to perform simple insert, update,
select, and delete database operations in the Program.cs file for the simplicity of
this exercise.

Let’s start by inserting new data into the database.

Adding a record
Go ahead and add the following code within the Program class:

static readonly DbFirstDemoContext _dbContext = new
DbFirstDemoContext();

static int GetRecordCount()

{

 return _dbContext.People.ToList().Count;

}

static void AddRecord()

{

 var person = new Person { FirstName = “Vjor”, LastName =
 “Durano”, DateOfBirth = Convert.ToDateTime(“06/19/2020”) };

 _dbContext.Add(person);

 _dbContext.SaveChanges();

}

The preceding code defines a static readonly instance of the
DbFirstDemoContext class. We need the DbContext so that we can access the
DbSet and perform database operations against it.

The GetRecordCount() method simply returns the number of record counts stored in
the database. The AddRecord() method is responsible for inserting a new record into
the database. In this example, we just defined some static values for the Person Model
for simplicity. The _dbContext.Add() method takes a Model as the parameter. In
this case, we’ve passed the person variable to it and then invoked the SaveChanges()
method of the DbContext class. Any changes you’ve made to the DbContext won’t be
reflected in the underlying database – not unless you call the SaveChanges() method.

278 APIs and Data Access

Now, what’s left for us to do here is to call the methods in the preceding code. Go ahead
and copy the following code in the Main method of the Program class:

static void Main(string[] args)

{

 AddRecord();

 Console.WriteLine($”Record count: {GetRecordCount()}”);

}

Running the preceding code will insert a new record into the database and output the
value 1 as the record count.

You can verify that the record has been created in the database by going to the SQL Server
Object Explorer pane in Visual Studio. Drill down to the dbo.Person table, right-click
on it, and select View Data. It should show the newly added record in the database, as
shown in Figure 7.4:

Figure 7.4 – Showing data in the dbo.Person table

Cool! Now, let’s continue and do some other database operations.

Updating a record
Let’s perform a simple update to an existing record in the database. Append the following
code within the Program class:

static void UpdateRecord(int id)

{

 var person = _dbContext.People.Find(id);

 // removed null check validation for brevity

 person.FirstName = “Vynn Markus”;

 person.DateOfBirth = Convert.ToDateTime(“11/22/2016”);

 _dbContext.Update(person);

Learning database-first development 279

 _dbContext.SaveChanges();

}

The preceding code takes an id as an argument. It then queries the database using the
Find() method of the DbContext. We then check whether the id that we passed in
has an associated record in the database. If the Find() method returns null, we simply
do nothing and return directly to the caller. Otherwise, if the given id existed in the
database, we perform a database update. In this case, we’ve simply replaced the value of
the FirstName and DateOfBirth properties.

Now, let’s call the UpdateRecord() method in the Main method of the Program class
as in the following:

static void Main(string[] args)

{

 UpdateRecord(1);

}

In the preceding code, we manually pass the value of 1 as the id. That value represents an
existing record in the database when we performed insertion in the previous section.

Running the code should update the values for the FirstName and DateOfBirth
columns as shown in Figure 7.5:

Figure 7.5 – Showing updated data in the dbo.Person table

Great! Now, let’s continue with other database operations.

Querying a record
Go ahead and copy the following code within the Program class:

static Person GetRecord(int id)

{

 return _dbContext.People.SingleOrDefault(p => p.Id.

280 APIs and Data Access

Equals(id));

}

The preceding code also takes an id as an argument so it can identify which record to
fetch. What it does is it queries the database using the LINQ SingleOrDefault()
extension method and uses a lambda expression to perform value comparisons with
the given id value. If the id matches with a record from the database, then we return a
Person object to the caller.

Now, let’s invoke the GetRecord() method by copying the following code within the
Main method of the Program class:

static void Main(string[] args)

{

 var p = GetRecord(1);

 if (p != null)

 {

 Console.WriteLine($”FullName: {p.FirstName}
 {p.LastName}”);

 Console.WriteLine($”Birth Date: {p.DateOfBirth.
 ToShortDateString()}”);

 }

}

In the preceding code, we’ve manually passed the value of 1 again as the parameter to the
GetRecord() method. This is to ensure that we are getting a record back since we only
have one record in the database at the moment. If you pass an id value that doesn’t exist
in the database, then the GetRecord() method will return null. That’s why you see we
have implemented a basic validation to check against null so that the application won’t
break. We then print the values to the console window.

Running the code will result in the following as shown in Figure 7.6:

Figure 7.6 – Fetching a record console output

Learning database-first development 281

It’s that simple! There are many things that you can do with LINQ to query data, especially
complex data. In this example, we are just doing basic querying with a single database for
you to better understand how it works.

Now, let’s move on to the last example.

Deleting a record
Now, let’s see how we can easily perform deletion with EF Core. Copy the following code
within the Program class:

static void DeleteRecord(int id)

{

 var person = _dbContext.People.Find(id);

 // removed null check validation for brevity

 _dbContext.Remove(person);

 _dbContext.SaveChanges();

}

Just like in the database update operation, the preceding code checks for the existing
record first using the Find() method. If the record exists, we invoke the Remove()
method of the DbContext and save the changes to reflect the deletion in the database.

Now, copy the following code in the Main method of the Program class:

static void Main(string[] args)

{

 DeleteRecord(1);

 Console.WriteLine($”Record count: {GetRecordCount()}”);

}

Running the code will delete the record in the database with an id value equal to 1. The
call to the GetRecordCount() method will now return 0 as we don’t have any other
records in the database.

Now that you’ve learned about implementing a database-first approach with EF Core, let’s
move on to the next section and explore the EF Core code-first approach in concert with
ASP.NET Core Web API.

282 APIs and Data Access

Learning code-first development
In this section, we are going to explore EF Core code-first development by building a
simple ASP.NET Core Web API application to perform basic database operations.

Before we get our hands dirty with coding, let’s first review what ASP.NET Core Web
API is.

Reviewing ASP.NET Core Web API
There are many ways to enable various systems to access data from one application to
another. A few examples of communications are HTTP-based APIs, web services, WCF
servers, event-based communication, message queues, and many others. Nowadays,
HTTP-based APIs are the most commonly used means of communication between
applications. There are a few ways to use HTTP as the transport protocol for building
APIs: OpenAPI, Remote Procedure Call (gRPC), and REpresentational State Transfer
(REST).

ASP.NET Core Web API is an HTTP-based framework for building RESTful APIs that
allow other applications on different platforms to consume and pass data over HTTP. In
the ASP.NET Core application, Web APIs are very similar to MVC except that they return
data as the response to the client instead of a View. The term client in the context of APIs
refers to either a web app, mobile app, desktop app, another Web API, or any other type of
service that supports the HTTP protocol.

Creating a Web API project
Now that you know what Web API is all about, let’s see how we can build a simple, yet
realistic RESTFul API application that serves data from a real database. Keep in mind
though that we’re not going to cover all the constraints and guidelines of REST as it would
be a huge task to cover them all in a single chapter. Instead, we will just be covering some
of the basic guidelines for you to be able to get a good grasp and a headstart with building
APIs in ASP.NET Core.

To create a new Web API project, fire up Visual Studio 2019 and follow the steps given
here:

1.	 Select the Create a new project option.

2.	 On the next screen, select ASP.NET Core Web Application and then click Next.

3.	 On the Configure your new project dialog, set the project name to EFCore_
CodeFirst and choose the location that you want the project to be created at.

4.	 Click Create. On the next screen, select the API project template and click Create.

Learning code-first development 283

You should see the default files generated by Visual Studio for the Web API template.
The default generated template includes WeatherForecastController to simulate
a simple HTTP GET request using static data. To ensure that the project works, run the
application by pressing the Ctrl + F5 keys and you should be presented with the following
output when everything is fine as shown in Figure 7.7:

Figure 7.7 – Weather forecast HTTP GET response output

At this point, we can conclude that the default project is working properly. Now let’s move
on to the next step and set up the data access part of the application.

Configuring data access
The first thing that we need to do here is to integrate the required NuGet package
dependencies for the application. Just like what we did in the Integrating Entity Framework
Core section, install the following NuGet packages:

•	 Microsoft.EntityFrameworkCore

•	 Microsoft.EntityFrameworkCore.Design

•	 Microsoft.EntityFrameworkCore.SqlServer

At the minimum, we need to add these dependencies so we can work with EF Core,
use SQL Server as the database provider, and finally, use EF Core commands to create
migrations and database synchronization.

After successfully installing the required NuGet package dependencies, let’s jump to the
next step and create our Models.

Creating entity models
As we learned in the code-first workflow, we are going to begin creating the conceptual
Models that represent entities.

284 APIs and Data Access

Create a new folder called Db at the root of the application and create a sub-folder called
Models. To make this exercise more fun, we are going to define a few Models that
contain relationships. We are going to be building an API where music players can submit
their information along with the musical instruments that they play. To achieve this
requirement, we are going to need a few models to hold different information.

Now, create the following classes within the Models folder:

•	 InstrumentType.cs

•	 PlayerInstrument.cs

•	 Player.cs

The following is the class definition of the InstrumentType.cs file:

public class InstrumentType

{

 public int InstrumentTypeId { get; set; }

 public string Name { get; set; }

}

The following is the class definition of the PlayerInstrument.cs file:

public class PlayerInstrument

{

 public int PlayerInstrumentId { get; set; }

 public int PlayerId { get; set; }

 public int InstrumentTypeId { get; set; }

 public string ModelName { get; set; }

 public string Level { get; set; }

}

The following is the class definition of the Player.cs file:

public class Player

{

 public int PlayerId { get; set; }

 public string NickName { get; set; }

 public List<PlayerInstrument> Instruments { get; set; }

 public DateTime JoinedDate { get; set; }

}

Learning code-first development 285

The classes in the preceding code are nothing but plain classes that house some properties
that are required for us to build some API endpoints. These classes represent our Models
that we are going to migrate as database tables later on. Keep in mind that, for simplicity’s
sake, we are using an int type as identifiers in this example. In a real application, you
may want to consider using the Globally Unique Identifier (GUID) type instead so that it
can’t be easily guessed when you expose these identifiers in your API endpoints.

Seeding data
Next, we’ll create an extension method to demonstrate preloading data into our lookup
table called InstrumentType. Go ahead and create a new class called DbSeeder
within the Db folder, then copy the following code:

public static class DbSeeder

{

 public static void Seed(this ModelBuilder modelBuilder)

 {

 modelBuilder.Entity<InstrumentType>().HasData(

 new InstrumentType { InstrumentTypeId = 1, Name =
 “Acoustic Guitar” },

 new InstrumentType { InstrumentTypeId = 2, Name =
 “Electric Guitar” },

 new InstrumentType { InstrumentTypeId = 3, Name =
 “Drums” },

 new InstrumentType { InstrumentTypeId = 4, Name =
 “Bass” },

 new InstrumentType { InstrumentTypeId = 5, Name =
 “Keyboard” }

);

 }

}

The preceding code initializes some data for the InstrumentType Model using the
HasData() method of the EntityTypeBuilder<T> object. We will invoke the
Seed() extension method in the next step when we configure our DbContext.

286 APIs and Data Access

Defining a DbContext
Create a new class called CodeFirstDemoContext.cs and copy the following code:

public class CodeFirstDemoContext : DbContext

{

 public
CodeFirstDemoContext(DbContextOptions<CodeFirstDemoContext>
options)

 : base(options) { }

 public DbSet<Player> Players { get; set; }

 public DbSet<PlayerInstrument> PlayerInstruments { get;
 set; }

 public DbSet<InstrumentType> InstrumentTypes { get; set; }

 protected override void OnModelCreating(ModelBuilder
 modelBuilder)

 {

 modelBuilder.Entity<Player>()

 .HasMany(p => p.Instruments)

 .WithOne();

 modelBuilder.Seed();

 }

}

The preceding code defines a few DbSet entities for the Player, PlayerInstrument,
and InstrumentType Models. In the OnModelCreating() method, we’ve
configured a one-to-many relationship between the Player and PlayerInstrument
Models. The HasMany() method instructs the framework that the Player entity can
contain one or more PlayerInstrument entries. The call to the modelBuilder.
Seed() method will prepopulate the InstrumentType table in the database with data
at the time it is created.

Keep in mind that the DbContext features extension methods to do database CRUD
operations and already manages transactions. So, there’s really no need for you to create
a generic repository and unit of work pattern, not unless it’s really needed to add more
value.

Learning code-first development 287

Registering the DbContext as a service
Within the Db folder, go ahead and create a new class called DbServiceExtension.
cs and copy the following code:

public static class DbServiceExtension

{

 public static void AddDatabaseService(this
IServiceCollection services, string connectionString)

 => services.
AddDbContext<CodeFirstDemoContext>(options => options.
UseSqlServer(connectionString));

}

The preceding code defines a static method called AddDatabaseService(), which
is responsible for registering the DbContext that uses the SQL Server database provider
in the DI container.

Now that we have our DbContext, let’s move on to the next step and wire up the
remaining pieces to make the database migration work.

Setting the database ConnectionString
In this exercise, we will also use a local database built into Visual Studio. However, this
time, we won’t be injecting the ConnectionString value into our code. Instead, we’ll
use a configuration file to store it. Now, open the appsettings.json file and append
the following configuration:

“ConnectionStrings”: {

 “CodeFirstDemoDb”: “Data
Source=(localdb)\\MSSQLLocalDB;Initial
Catalog=CodeFirstDemo;Integrated Security=True;Connect
Timeout=30;Encrypt=False;TrustServerCertificate=False;
ApplicationIntent=ReadWrite;MultiSubnetFailover=False”

}

The preceding code uses the same ConnectionStrings value that we used in
the previous example about learning database-first development, except that we
are changing the Initial Catalog value to CodeFirstDemo. This value will
automatically become the database name once the migration has been executed in SQL
Server.

288 APIs and Data Access

Note
As a reminder, always consider storing the ConnectionStrings value
and other sensitive data in a key vault or secrets manager when developing a
real application. This is to prevent exposing sensitive information to malicious
users when hosting your source code in a version control repository.

Modifying the Startup class
Let’s update the ConfigureServices() method of the Startup class to the following
code:

public void ConfigureServices(IServiceCollection services)

{

 services.AddDatabaseService(Configuration.
 GetConnectionString(“CodeFirstDemoDb”));

 //Removed other code for brevity

}

In the preceding code, we’ve invoked the AddDatabaseService() extension method
that we created earlier. Registering the DbContext as a service in the DI container
enables us to reference an instance of this service in any class within the application via
DI.

Managing database migrations
In real-world development scenarios, business requirements often change and so do your
Models. In cases like this, the migration features in EF Core come in handy to keep your
conceptual Model in sync with the database.

To recap, migrations in EF Core are managed by executing commands either using the
PMC or via .NET Core CLI. In this section, we are going to learn how we can perform the
commands to do migrations.

First, let’s start with creating a migration.

Creating a migration
Open the PMC in Visual Studio and run the following command:

PM> Add-Migration InitialMigration -o Db/Migrations

Learning code-first development 289

Alternatively, you can also run the following command using the .NET Core CLI:

dotnet ef migrations add InitialMigration -o Db/Migrations

Both migration commands should generate the migration files under the Db/
Migrations folder, as shown in Figure 7.8:

Figure 7.8 – Generated migration files

EF Core will use the generated migration files in the preceding screenshot to apply
migrations in the database. The 20200913063007_InitialMigration.cs file
contains Up() and Down() methods that accept MigrationBuilder as an argument.
The Up() method gets executed when you apply Model changes to the database. The
Down() method discards any changes and restores the database state based on the
previous migration. The CodeFirstDemoContextModelSnapshot file contains a
snapshot of the database every time you add a migration.

You may have noticed that the naming convention for the migration files is prefixed with
a timestamp. This is because the framework will use these files in comparing the current
state of the Models against the previous database snapshot when you create a new
migration.

Now that we have the migration files, the next thing that we need to do is to apply the
created migration to reflect the changes in the database.

Applying Migration
Navigate back to the PMC window and run the following command:

PM> Update-Database

The .NET Core CLI equivalent command is the following:

dotnet ef database update

290 APIs and Data Access

The preceding commands will generate a database called CodeFirstDemo with the
corresponding tables based on the Models along with a special migrations history table
named _EFMigrationsHistory as shown in Figure 7.9:

Figure 7.9 – The generated CodeFirstDemo database

The dbo._EFMigrationsHistory table stores the name of the migration file and EF
Core version used to execute the migration. This table will be used by the framework to
automatically apply changes based on the new migration. The dbo.InstrumentTypes
table will also be preloaded with data.

At this point, you should now have the data access all set up and ready for use in the
application.

Learning code-first development 291

Reviewing DTO classes
Before we deep dive into the implementation details. Let’s first review what DTOs are, as
we will be creating them later in this exercise.

Data Transfer Objects (DTOs) are classes that define a Model with sometimes
predefined validation in place for HTTP responses and requests. You can think of DTOs
as ViewModels in MVC where you only want to expose relevant data to the View. The
basic idea of having DTOs is to decouple them from the actual Entity Model classes
that are used by the data access layer to populate the data. This way, when a requirement
changes or if your Entity Model properties are changed, they won’t be affected and
won’t break your API. Your Entity Model classes should only be used for database
related processes. Your DTOs should only be used for taking requests input and response
output, and should only expose properties that you want your client to see.

Now, let’s move on to the next step and create a few API endpoints for serving and
consuming data.

Creating Web API endpoints
Most examples on the internet teach you how to create Web API endpoints by
implementing the logic directly inside the Controllers for simplicity. For this exercise,
we won’t do that, instead, we will create APIs by applying some recommended guidelines
and practices. This way, you will be able to use the techniques and apply them when
building real-world applications.

For this exercise, we are going to cover the most commonly used HTTP methods (verbs)
for implementing Web API endpoints, such as GET, POST, PUT, and DELETE.

Implementing an HTTP POST endpoint
Let’s start off by implementing a POST API endpoint for adding a new record in the
database.

292 APIs and Data Access

Defining DTOs
First, go ahead and create a new folder called Dto at the root of the application. The way
you want to structure your project files is based on preference and you are free to organize
them however you want. For this demo, we wanted to have a clean separation of concerns
so we can easily navigate and modify code without affecting other code. So, within the
Dto folder, create a subfolder called PlayerInstruments and then create a new class
called CreatePlayerInstrumentRequest with the following code:

public class CreatePlayerInstrumentRequest

{

 public int InstrumentTypeId { get; set; }

 public string ModelName { get; set; }

 public string Level { get; set; }

}

The preceding code is a class that represents a DTO. Remember, DTOs should only contain
properties that we need to expose from the outside world or consumers. In essence, DTOs
are meant to be light classes.

Create another sub-folder called Players and copy the following code:

public class CreatePlayerRequest

{

 [Required]

 public string NickName { get; set; }

 [Required]

 public List<CreatePlayerInstrumentRequest>
 PlayerInstruments { get; set; }

}

The preceding code contains a couple of properties. Notice that we’ve referenced
the CreatePlayerInstrumentRequest class in a List type representation.
This is to enable a one-to-many relation when you create a new player with multiple
instruments. You can see that each property has been decorated with the [Required]
attribute to ensure that the properties will not be left empty when submitting a request.
The [Required] attribute is built into the framework and sits under the System.
ComponentModel.DataAnnotations namespace. The process of enforcing
validations to Models is called data annotation. If you want to have a clean Model
definition and perform complex predefined validations in a fluent way, then you may try
considering using FluentValidation instead.

Learning code-first development 293

Defining an interface
As you may have seen in the previous chapter’s examples, we can directly pass an
instance of the DbContext in the Controller via constructor injection. However,
when building real applications, you should make your Controllers as thin as
possible and take business logic and data processing outside your Controllers. Your
Controllers should only handle things like routing, Model validations, and delegating
the data processing to a separate service. With that said, we are going to create a service
that handles the communication between the Controllers and DbContext.

Implementing the code logic in a separate service is a way of making your Controller
thin and simple. However, we don’t want the Controller to directly depend on the
actual service implementation as it can lead to tightly coupled dependencies. Instead, we
will create an interface abstraction to decouple the actual service dependency. This
makes your code more testable, extensible, and easier to manage. You may review Chapter
3, Dependency Injection, for details about interface abstraction.

Now, create a new folder called interfaces at the root of the application. Within the
folder, create a new interface called IPlayerService and copy the following code:

public interface IPlayerService

{

 Task CreatePlayerAsync(CreatePlayerRequest playerRequest);

}

The preceding code defines a method that takes the CreatePlayerRequest class that
we created earlier. The method returns a Task, which denotes that the method will be
invoked asynchronously.

Now that we have an interface defined, we should now be able to create a service that
implements it. Let’s see how to do that in the next step.

Implementing the service
In this section, we are going to implement the interface we defined earlier to build the
actual logic for the method defined in the interface.

Go ahead and create a new folder called Services at the root of the application and then
replace the default generated code with the following:

public class PlayerService : IPlayerService

{

 private readonly CodeFirstDemoContext _dbContext;

 public PlayerService(CodeFirstDemoContext dbContext)

294 APIs and Data Access

 {

 _dbContext = dbContext;

 }

}

In the preceding code, we’ve defined a private and readonly field of the
CodeFirstDemoContext and added a class constructor that injects the
CodeFirstDemoContext as a dependency of the PlayerService class. By applying
dependency injection in the constructor, any methods within the class will be able
to access the instance of the CodeFirstDemoContext, allowing us to invoke all its
available methods and properties.

You may also notice that the class implements the IPlayerService interface. Since
an interface defines a contract that a class should follow, then the next step that we
are going to take is to implement the CreatePlayerAsync() method. Go ahead and
append the following code within the PlayerService class:

public async Task CreatePlayerAsync(CreatePlayerRequest
playerRequest)

{

 using var transaction = await _dbContext.Database.
 BeginTransactionAsync();

 try

 {

 var player = new Player

 {

 NickName = playerRequest.NickName,

 JoinedDate = DateTime.Now

 };

 await _dbContext.Players.AddAsync(player);

 await _dbContext.SaveChangesAsync();

 var playerId = player.PlayerId;

 }

 catch

 {

 await transaction.RollbackAsync();

 throw;

Learning code-first development 295

 }

}

In the preceding code, the method was implemented as asynchronous by marking it
with the async keyword. What the code does is it first adds a new Player entry in the
database and gets back the PlayerId that has been generated.

To complete the CreatePlayerAsync() method. Copy the following code within the
try block after the var playerId = player.PlayerId; line:

var playerInstruments = new List<PlayerInstrument>();

foreach (var instrument in playerRequest.PlayerInstruments)

{

 playerInstruments.Add(new PlayerInstrument

 {

 PlayerId = playerId,

 InstrumentTypeId = instrument.InstrumentTypeId,

 ModelName = instrument.ModelName,

 Level = instrument.Level

 });

}

_dbContext.PlayerInstruments.AddRange(playerInstruments);

await _dbContext.SaveChangesAsync();

await transaction.CommitAsync();

The preceding code iterates through the playerRequest.PlayerInstruments
collection and creates the associated PlayerInstrument in the database along with the
playerId.

Since the dbo.PlayerInstruments table depends on the dbo.Players table,
we’ve used the EF Core database transaction feature to ensure that records in both tables
will only be created on a successful operation. This is to avoid the data being corrupted
when one database operation is failing. You can see it by invoking the transaction.
CommitAsync() method when everything runs successfully and invoking the
transaction.RollbackAsync() method within the catch block to revert any
changes when an error occurs.

Let’s proceed to the next step and register the service.

296 APIs and Data Access

Registering the service
We need to register the interface mapping into the DI container in order for us to inject
the interface into any other classes within the application. Add the following code
within the ConfigureServices() method of the Startup.cs file:

services.AddTransient<IPlayerService, PlayerService>();

The preceding code registers the PlayerService class in the DI container as an
IPlayerService interface type with a transient scope. This tells the framework to
resolve interface dependency we inject it into the Controller class constructor at
runtime.

Now that we have implemented the service and wired up the piece in the DI container, we
can now inject the IPlayerService as a dependency of the Controller class, which
we are going to create in the next step.

Creating the API controller
Go ahead and right-click on the Controllers folder and then select Add > Controller
> API Controller Empty, and then click Add.

Name the class PlayersController.cs and then click Add. Now, copy the following
code so it will look similar to this:

[Route(“api/[controller]”)]

[ApiController]

public class PlayersController : ControllerBase

{

 private readonly IPlayerService _playerService;

 public PlayersController(IPlayerService playerService)

 {

 _playerService = playerService;

 }

}

Learning code-first development 297

The preceding code is the typical structure of an API Controller class. Web API
controllers use the same routing middleware that’s used for MVC except that it uses
attribute routing to define the routes. The [Route] attribute enables you to specify
whatever route for your API endpoints. The ASP.NET Core API default convention
uses the format api/[controller] where the [controller] segment represents
a token placeholder to automatically build the route based on the Controller class
prefixed name. For this example, the route api/[controller] will be translated to
api/players where players came from the PlayersController class name. The
[ApiController] attribute enables the Controller to apply API-specific behaviors
for your APIs, such as attribute routing requirements, automatic handling of HTTP 404
and 405 responses, problem details for errors, and more.

Web APIs should derive from the ControllerBase abstract class to utilize
the existing functionalities built into the framework for building RESTful APIs. In
the preceding code, you can see that we’ve now injected the IPlayerService
as a dependency instead of the DbContext itself. This decouples your data access
implementation from the Controller class, allowing more flexibility when you
decide to change the underlying implementation of the service, as well as making your
Controller thin and clean.

Now, append the following code for the POST endpoint:

[HttpPost]

public async Task<IActionResult> PostPlayerAsync([FromBody]
CreatePlayerRequest playerRequest)

{

 if (!ModelState.IsValid) { return BadRequest(); }

 await _playerService.CreatePlayerAsync(playerRequest);

 return Ok(“Record has been added successfully.”);

}

298 APIs and Data Access

The preceding code takes a CreatePlayerRequest class as an argument. By
marking the argument with the [FromBody] attribute, we tell the framework to only
accept values from the body of the request for this endpoint. You can also see that the
PostPlayerAsync() method has been decorated with the [HttpPost] attribute,
which signifies that the method can only be invoked for HTTP POST requests. You can
see that the method implementation is now much cleaner as it only validates the DTO and
delegates the actual data processing to the service. ModelState.IsValid() will check
for any predefined validation rules for the CreatePlayerRequest Model and returns
a Boolean to indicate whether the validation failed or passed. In this example, it only
checks whether both properties in the CreatePlayerRequest class are not empty by
checking against the [Required] attribute annotated for each property.

At this point, you should now have the POST endpoint available. Let’s do a quick test to
ensure that the endpoint is working as we expect.

Testing the POST endpoint
We will use Postman to test our API endpoints. Postman is really a handy tool to test APIs
without having to create a UI, and it’s absolutely free. Go ahead and download it here:
https://www.getpostman.com/.

After downloading Postman, install it on your machine so you can start testing. Now,
run the application first, by pressing the Ctrl + F5 keys to launch the application in the
browser.

Open Postman and then make a POST request with the following URL: https://
localhost:44306/api/players.

Note that port 44306 might be different in your case, so make sure to replace that value
with the actual port your local application is running at. You can see launchSettings.
json under the Properties folder in your project to learn more about how launch
URL profiles are configured.

Let’s continue with the testing. In Postman, switch to the Body tab, select the raw option,
and select JSON as the format. Refer to the following Figure 7.10 for a visual reference:

Figure 7.10 – Configuring a POST request in Postman

https://www.getpostman.com/
https://localhost:44306/api/players
https://localhost:44306/api/players

Learning code-first development 299

Now, in the raw textbox, copy the following JSON as the request payload:

{

 “nickName”:”Vianne”,

 “playerInstruments” :[

 {

 “InstrumentTypeId”: 1,

 “ModelName”: “Taylor 900 Series”,

 “Level”: “Professional”

 },

 {

 “InstrumentTypeId”: 2,

 “ModelName”: “Gibson Les Paul Classic”,

 “Level”: “Intermediate”

 },

 {

 “InstrumentTypeId”: 3,

 “ModelName”: “Pearl EXL705 Export”,

 “Level”: “Novice”

 }

]

}

The preceding code is the JSON request body that the /api/players endpoint expects.
If you remember, the POST endpoint expects CreatePlayerRequest as an argument.
The JSON payload in the preceding code represents that.

300 APIs and Data Access

Now, click the Send button in Postman to invoke the HTTP POST endpoint and you
should be presented with the following result as shown in Figure 7.11:

Figure 7.11 – Making a POST request in Postman

The preceding screenshot returns a 200 HTTP status with a response message indicating
that the record has been created successfully in the database. You can verify the newly
inserted data by looking at the dbo.Players and dbo.PlayerInstruments
database table.

Now, let’s test the Model validation. The following Figure 7.12 shows the result if we omit
the playerInstruments attribute in the request body and hit the Send button:

Learning code-first development 301

Figure 7.12 – Validation error response output

The preceding screenshot shows a validation error in ProblemDetails format with
the 400 HTTP Status code. This is how the response is going to look when you annotate a
Model property to be required and you don’t supply it when invoking the API endpoint.

Now that you’ve learned the basics of creating a Web API endpoint for a POST request,
let’s continue to get our hands dirty by exploring other examples.

Implementing HTTP GET endpoints
In this section, we’ll create a couple of HTTP GET endpoints for you to learn some of the
basic ways to fetch data from the database.

Defining the DTO
Just like what we did for the POST endpoint, the first step that we need to do is to create a
DTO class for us to define the properties that we need to expose. Create a new class called
GetPlayerResponse within the Dto/Players folder and copy the following code:

public class GetPlayerResponse

{

 public int PlayerId { get; set; }

 public string NickName { get; set; }

 public DateTime JoinedDate { get; set; }

 public int InstrumentSubmittedCount { get; set; }

}

302 APIs and Data Access

The preceding code is just a plain class that holds a few properties. These are the
properties that we are going to return to the client as the response.

For this endpoint implementation, we are not going to return all records from the
database to the client because it would be very inefficient. Imagine you have thousands or
millions of records in your database and your API endpoint tries to return all of them at
once. That would definitely blow down the entire performance of your application and,
worse, it could make your application unusable.

Implementing GET with pagination
To prevent potential performance issues from happening, we will implement a pagination
feature to value performance. This will enable us to limit the amount of data to return to
the client and maintain performance even if the data in the database grows.

Now, go ahead and create a new class called PagedResponse within the Dto folder.
Copy the following code:

public class PagedResponse<T>

{

 const int _maxPageSize = 100;

 public int CurrentPageNumber { get; set; }

 public int PageCount { get; set; }

 public int PageSize

 {

 get => 20;

 set => _ = (value > _maxPageSize) ? _maxPageSize :
 value;

 }

 public int TotalRecordCount { get; set; }

 public IList<T> Result { get; set; }

 public PagedResponse()

 {

 Result = new List<T>();

 }

}

Learning code-first development 303

The preceding code defines some basic metadata for the paged Model. Notice that we’ve
set the constant _maxPageSize variable to 100. This is the value of the maximum
number of records that the API GET endpoint will return to the client. The PageSize
property is set to 20 as the default in case the client won’t specify the value when invoking
the endpoint. Another thing to notice is we’ve defined a generic property Result of type
IList<T>. The T can be of any Model that you want to return as paginated.

Next, let’s create a new class called UrlQueryParameters within the Dto folder. Copy
the following code:

public class UrlQueryParameters

{

 public int PageNumber { get; set; };

 public int PageSize { get; set; };

}

The preceding code will be used as the method argument for the GET endpoint that we
are going to implement later. This is to allow clients to set the page size and number when
requesting the data.

Next, create a new folder called Extensions at the root of the application. Within the
Extensions folder, create a new class called PagerExtension and copy the following
code:

public static class PagerExtension

{

 public static async Task<PagedResponse<T>>
 PaginateAsync<T>(

 this IQueryable<T> query,

 int pageNumber,

 int pageSize)

 where T : class

 {

 var paged = new PagedResponse<T>();

 pageNumber = (pageNumber < 0) ? 1 : pageNumber;

 paged.CurrentPageNumber = pageNumber;

 paged.PageSize = pageSize;

 paged.TotalRecordCount = await query.CountAsync();

304 APIs and Data Access

 var pageCount = (double)paged.TotalRecordCount /
 pageSize;

 paged.PageCount = (int)Math.Ceiling(pageCount);

 var startRow = (pageNumber - 1) * pageSize;

 paged.Result = await query.Skip(startRow).
 Take(pageSize).ToListAsync();

 return paged;

 }

}

The preceding code is where the actual pagination and calculation is happening. The
PaginateAsync() method takes three parameters in order to perform pagination
and returns a Task of type PagedResponse<T>. The this keyword in the method
argument denotes that the method is an extension method of the type IQueryable<T>.
Notice that the code uses the LINQ Skip() and Take() methods to paginate the result.

Now that we have defined the DTO and implemented an extension method to paginate
the data, let’s continue to the next step and add a new method signature in the
IPlayerService interface.

Updating the interface
Go ahead and add the following code within the IPlayerService interface:

Task<PagedResponse<GetPlayerResponse>>
GetPlayersAsync(UrlQueryParameters urlQueryParameters);

The preceding code defines a method that takes UrlQueryParameters as an argument
and returns PagedResponse of type GetPlayerResponse Model. Next, we’ll
update the PlayerService to implement this method.

Updating the service
Add the following code within the PlayerService class:

public async Task<PagedResponse<GetPlayerResponse>>
GetPlayersAsync(UrlQueryParameters parameters)

{

 var query = await _dbContext.Players

 .AsNoTracking()

Learning code-first development 305

 .Include(p => p.Instruments)

 .PaginateAsync(parameters.PageNumber,
 parameters.PageSize);

 return new PagedResponse<GetPlayerResponse>

 {

 PageCount = query.PageCount,

 CurrentPageNumber = query.CurrentPageNumber,

 PageSize = query.PageSize,

 TotalRecordCount = query.TotalRecordCount,

 Result = query.Result.Select(p => new GetPlayerResponse

 {

 PlayerId = p.PlayerId,

 NickName = p.NickName,

 JoinedDate = p.JoinedDate,

 InstrumentSubmittedCount = p.Instruments.Count

 }).ToList()

 };

}

The preceding code shows the EF Core way of querying data from the database. Since
we are only fetching data, we’ve used the AsNoTracking() method to improve the
query performance. No tracking queries are much quicker because they eliminate the
need to set up change tracking information for the entity, thus they are quicker to execute
and improve query performance for read-only data. The Include() method allows us
to load the associated data in the query results. We then call the PaginateAsync()
extension method that we implemented earlier to chunk the data based on
UrlQueryParameters property values. Finally, we construct the return response using
a LINQ method-based query. In this case, we return a PagedResponse object with the
GetPlayerResponse. type

To see the actual SQL script generated by EF Core, or if you prefer to use raw SQL script
to query the data, check out the links in the Further reading section of this chapter.

Let’s move on to the next step and update the Controller class to define the GET
endpoint.

306 APIs and Data Access

Updating the controller
Add the following code within the PlayersController class:

[HttpGet]

public async Task<IActionResult> GetPlayersAsync([FromQuery]
UrlQueryParameters urlQueryParameters)

{

 var player = await _playerService.
 GetPlayersAsync(urlQueryParameters);

 //removed null validation check for brevity

 return Ok(player);

}

The preceding code takes UrlQueryParameters as the request parameter. By
decorating the parameter with the [FromQuery] attribute, we tell the framework
to evaluate and get the request values from the query string. The method invokes
GetPlayersAsync() from the IPlayerService interface and passes along
UrlQueryParameters as the argument. If the result is null, we return NotFound();
otherwise, we return Ok() along with the result.

Now, let’s test the endpoint to ensure we get what we expect.

Testing the endpoint
Now run the application and open Postman. Make an HTTP GET request with the
following endpoint:

https://localhost:44306/api/players?pageNumber=1&pageSize=2

You can set the value of pageNumber and pageSize to whatever you want and then hit
the Send button. The following Figure 7.13 is a sample screenshot of the response output:

Learning code-first development 307

Figure 7.13 – Paginated data response output

Sweet! Now, let’s try another GET endpoint example.

Implementing GET by ID
In this section, we will learn how to fetch data from the database by passing the ID of the
record. We will see how we can query the related data from each database table and return
a response to the client containing detailed information coming from the different tables.

Defining the DTOs
Without further ado, let’s go ahead and create a new class called
GetPlayerInstrumentResponse within the Dto/PlayerInstrument folder.
Copy the following code:

public class GetPlayerInstrumentResponse

{

 public string InstrumentTypeName { get; set; }

 public string ModelName { get; set; }

 public string Level { get; set; }

}

308 APIs and Data Access

Create another new class called GetPlayerDetailResponse with the Dto/Players
folder and then copy the following code:

public class GetPlayerDetailResponse

{

 public string NickName { get; set; }

 public DateTime JoinedDate { get; set; }

 public List<GetPlayerInstrumentResponse> PlayerInstruments
 { get; set; }

}

The preceding classes represent the response DTO or Model that we are going to
expose to the client. Let’s move on to the next step and define a new method in the
IPlayerService interface.

Updating the interface
Add the following code within the IPlayerService interface:

Task<GetPlayerDetailResponse> GetPlayerDetailAsync(int id);

The preceding code is the method signature that we are going to implement in the service.
Let’s go ahead and do that.

Updating the service
Add the following code within the PlayerService class:

public async Task<GetPlayerDetailResponse>
GetPlayerDetailAsync(int id)

{

 var player = await _dbContext.Players.FindAsync(id);

 //removed null validation check for brevity

 var instruments = await

 (from pi in _dbContext.PlayerInstruments

 join it in _dbContext.InstrumentTypes

 on pi.InstrumentTypeId equals
 it.InstrumentTypeId

 where pi.PlayerId.Equals(id)

 select new GetPlayerInstrumentResponse

 {

 InstrumentTypeName = it.Name,

Learning code-first development 309

 ModelName = pi.ModelName,

 Level = pi.Level

 }).ToListAsync();

 return new GetPlayerDetailResponse

 {

 NickName = player.NickName,

 JoinedDate = player.JoinedDate,

 PlayerInstruments = instruments

 };

}

The preceding code contains the actual implementation of the
GetPlayerDetailAsync() method. The method in asynchronous that takes an id as
the argument and returns a GetPlayerDetailResponse type. The code first checks
whether the given id has associated records in the database using the FindAsync()
method. If the result is null, we return default or null; otherwise, we query the
database by joining the related tables using LINQ query expressions. If you’ve written
T-SQL before, you’ll notice that the query syntax is pretty much similar to SQL except that
it manipulates the conceptual Entity Models providing strongly-typed code with rich
IntelliSense support.

Now that we have our method implementation in place, let’s move on to the next step and
update the Controller class to define another GET endpoint.

Updating the controller
Add the following code within the PlayersController class:

[HttpGet(“{id:long}/detail”)]

public async Task<IActionResult> GetPlayerDetailAsync(int id)

{

 var player = await _playerService.GetPlayerDetailAsync(id);

 //removed null validation check for brevity

 return Ok(player);

}

310 APIs and Data Access

The preceding code defines a GET endpoint with a route configured to “{id:long}/
detail”. The id in the route represents a parameter that you can set in the URL. As a
friendly reminder, consider using GUID as record identifiers when exposing a resource ID
to the outside world instead of identity seed. This is to reduce the risk of exposing data to
malicious users trying to sniff your endpoints by just incrementing the id value.

 Let’s see how the output is going to look by testing the endpoint.

Testing the endpoint
Run the application and make a GET request in Postman with the following endpoint:

https://localhost:44306/api/players/1/detail

The following Figure 7.14 is a sample screenshot of the response output:

Figure 7.14 – Detailed data response output

Now that you’ve learned various ways to implement HTTP GET endpoints, let’s move on to
the next section and see how we can implement the PUT endpoint.

Learning code-first development 311

Implementing an HTTP PUT endpoint
In this section, we are going to learn how to update a record in the database by utilizing
the HTTP PUT method.

Defining a DTO
To make this example simple, let’s just update a single column in the database. Go ahead
and create a new class called UpdatePlayerRequest within the Dto/Players folder.
Copy the following code:

public class UpdatePlayerRequest

{

 [Required]

 public string NickName { get; set; }

}

Next, we’ll update the IPlayerService interface to include a new method for
performing a database update.

Updating the interface
Add the following code within the IPlayerService interface:

Task<bool> UpdatePlayerAsync(int id, UpdatePlayerRequest
playerRequest);

The preceding code is the method signature for updating the dbo.Players table in the
database. Let’s move on to the next step and implement this method in the service.

Updating the service
Add the following code within the IPlayerService class:

public async Task<bool> UpdatePlayerAsync(int id,
UpdatePlayerRequest playerRequest)

{

 var playerToUpdate = await _dbContext.Players.
 FindAsync(id);

 //removed null validation check for brevity

 playerToUpdate.NickName = playerRequest.NickName;

 _dbContext.Update(playerToUpdate);

 return await _dbContext.SaveChangesAsync() > 0;

}

312 APIs and Data Access

The preceding code is pretty much straightforward. First, it checks whether the id has an
associated record in the database. If the result is null, we return false; otherwise, we
update the database with the new value of the NickName property. Now, let’s move on to
the next step and update the Controller class to invoke this method.

Updating the controller
Add the following code within the PlayersController class:

[HttpPut(“{id:long}”)]

public async Task<IActionResult> PutPlayerAsync(int id,
[FromBody] UpdatePlayerRequest playerRequest)

{

 if (!ModelState.IsValid) { return BadRequest(); }

 var isUpdated = await _playerService.UpdatePlayerAsync(id,
 playerRequest);

 if (!isUpdated) {

 return NotFound($”PlayerId { id } not found.”);

 }

 return Ok(“Record has been updated successfully.”);

}

The preceding code takes an id and an UpdatePlayerRequest Model from the
request body. The method is decorated with [HttpPut(“{id:long}”)], which
signifies that the method can only be invoked in an HTTP PUT request. The id in the
route denotes a parameter in the URL.

Testing the PUT endpoint
Run the application and make a PUT request in Postman with the following endpoint:

https://localhost:44306/api/players/1

Now, just like in the POST request, copy the following code in the raw textbox:

{

 “nickName”:”Vynn”

}

Learning code-first development 313

The preceding code is the required parameter for the PUT endpoint. In this particular
example, we will change the NickName value to “Vynn” for id equal to 1. Clicking the
Send button should update the record in the database.

Now, when you perform a GET request by id via /api/players/1/detail, you
should see that the NickName for id holding the value of 1 has been updated. In this
case, the value “Vjor” is updated to “Vynn”.

Let’s move on to the last example – implementing an HTTP DELETE method.

Implementing an HTTP Delete endpoint
In this section, we are going to learn how to implement an API endpoint that performs
database record deletion. For this example, we don’t need to create a DTO since we are
just going to pass the id in the route for the delete endpoint. So, let’s jump right in by
updating the IPlayerService interface to include a new method for deletion.

Updating the interface
Add the following code within the IPlayerService interface:

Task<bool> DeletePlayerAsync(int id);

The preceding code is the method signature that we are going to implement in the next
section. Notice that the signature is similar to the update method except that we are not
passing a DTO or Model as an argument.

Let’s move on to the next step and implement the method in the service.

Updating the service
Add the following code within the PlayerService class:

public async Task<bool> DeletePlayerAsync(int id)

{

 var playerToDelete = await _dbContext.Players

 .Include(p => p.Instruments)

 .FirstAsync(p => p.PlayerId.
 Equals(id));

 //removed null validation check for brevity

 _dbContext.Remove(playerToDelete);

 return await _dbContext.SaveChangesAsync() > 0;

}

314 APIs and Data Access

The preceding code uses the Include() method to perform cascading deletions
with the associated records in the dbo.PlayerIntruments table. We then use the
FirstAsync() method to filter the record to be deleted based on the id value. If the
result is null, we return false; otherwise, we perform the record deletion using the
_dbContext.Remove() method. Now, let’s update the Controller class to invoke
this method.

Updating the controller
Add the following code within the PlayersController class:

[HttpDelete(“{id:long}”)]

public async Task<IActionResult> DeletePlayerAsync(int id)

{

 var isDeleted = await _playerService.DeletePlayerAsync(id);

 if (!isDeleted) {

 return NotFound($”PlayerId { id } not found.”);

 }

 return Ok(“Record has been deleted successfully.”);

}

The implementation in the preceding code is also similar to the update method, except
that the method is now decorated with the [HttpDelete] attribute. Now, let’s test the
DELETE API endpoint.

Testing the DELETE endpoint
Run the application again and make a DELETE request in Postman with the following
endpoint:

https://localhost:44306/api/players/1

Clicking the Send button should show a successful response output when the record with
id equal to 1 has been deleted from the database.

That’s it! If you’ve made it this far, then you should now be familiar with building APIs in
ASP.NET Core and be able to apply the things that you’ve learned in this chapter when
building your own APIs. As you may know, there are many things that you could do to
improve this project. You could try incorporating features such as logging, caching, HTTP
response consistency, error handling, validations, authentication, authorization, Swagger
documentation, and exploring other HTTP methods such as PATCH.

Summary 315

Summary
In this chapter, we’ve covered the concepts and the different design workflows for
implementing Entity Framework Core as your data access mechanism. Understanding
how the database-first and code-first workflows work is very important when deciding
how you want to design your data access layer. We’ve learned how APIs and data access
work together to serve and consume data from various clients. Learning how to create
APIs that deal with a real database from scratch gives you a better understanding of how
the underlying backend application works, especially if you will be working with real
applications that use the same technology stack.

We’ve learned how to implement the common HTTP methods in ASP.NET Core Web
API with practical hands-on coding exercises. We’ve also learned how to design an API to
make it more testable and maintainable by leveraging interface abstraction, and learned
about the concepts of having DTOs to value the separation of concerns and how to make
API controllers as thin as possible. Learning this technique enables you to easily manage
your code, without affecting much of your application code when you decide to refactor
your application. Finally, we’ve learned how to easily test API endpoints using Postman.

In the next chapter, you are going to learn about ASP.NET Core Identity for securing web
apps, APIs, managing user accounts, and more.

Further reading
•	 Entity Framework Core Resource – https://entityframeworkcore.com/

•	 EF Core Overview – https://docs.microsoft.com/en-us/ef/core/

•	 EF Core Supported Database Providers – https://docs.microsoft.com/
en-us/ef/core/providers/

•	 Lambda Expressions–- https://docs.microsoft.com/en-us/dotnet/
csharp/language-reference/operators/lambda-expressions

•	 LINQ Query Expressions – https://docs.microsoft.com/en-us/
dotnet/csharp/programming-guide/concepts/linq/basic-linq-
query-operations

•	 EF Core Querying Data –https://docs.microsoft.com/en-us/ef/
core/querying/

•	 EF Core Logging Commands – https://www.entityframeworktutorial.
net/efcore/logging-in-entityframework-core.aspx

•	 EF Core Raw SQL – https://docs.microsoft.com/en-us/ef/core/
querying/raw-sql

https://entityframeworkcore.com/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/providers/
https://docs.microsoft.com/en-us/ef/core/providers/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/ef/core/querying/
https://docs.microsoft.com/en-us/ef/core/querying/
https://www.entityframeworktutorial.net/efcore/logging-in-entityframework-core.aspx
https://www.entityframeworktutorial.net/efcore/logging-in-entityframework-core.aspx
https://docs.microsoft.com/en-us/ef/core/querying/raw-sql
https://docs.microsoft.com/en-us/ef/core/querying/raw-sql

316 APIs and Data Access

•	 Migrations Overview – https://docs.microsoft.com/en-us/ef/core/
managing-schemas/migrations

•	 Create Web APIs with ASP.NET Core – https://docs.microsoft.com/
en-us/aspnet/core/web-api

•	 C# Asynchronous Programming – https://docs.microsoft.com/en-us/
dotnet/csharp/programming-guide/concepts/async/

•	 ASP.NET Core Routing – https://docs.microsoft.com/en-us/aspnet/
core/mvc/controllers/routing

•	 Using FluentValidation with ASP.NET Core – https://docs.
fluentvalidation.net/en/latest/aspnet.html

https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/routing
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/routing
https://docs.fluentvalidation.net/en/latest/aspnet.html
https://docs.fluentvalidation.net/en/latest/aspnet.html

8
Working with

Identity in ASP.NET
Pretty much all websites these days have a login function. Even if they work when
browsing anonymously, there is usually an option to become a member or something
similar. This means that these websites have some concept of identity to tell their visitors
apart. In other words – if you are tasked with building a website, it is likely that you will
need to deal with identities as well. The thing is, identity can be hard to get right and the
consequences of getting it wrong can be less than fun. In this chapter, we will dive into the
basics of identity in ASP.NET 5.

We will cover the following topics in this chapter:

•	 Understanding authentication concepts

•	 Understanding authorization concepts

•	 The role of middleware in ASP.NET and identity

•	 OAuth and OpenID Connect basics

•	 Integrating with Azure Active Directory

•	 Working with federated identity

318 Working with Identity in ASP.NET

Technical requirements
This chapter includes short code snippets to demonstrate the concepts that are explained.
The following software is required to make it work:

•	 Visual Studio 2019: Visual Studio can be downloaded from https://
visualstudio.microsoft.com/vs/community/. The Community edition
is free and will work for the purposes of this book.

•	 Some of the samples require you to have an Azure Active Directory (AAD) tenant.
If you don't have one already, you can either create one by going to the Azure portal
(https://portal.azure.com) and sign up for a free account or even better,
sign up for a free Office 365 Developer account, which includes the paid version of
AAD as well as the Office 365 services:
https://docs.microsoft.com/en-us/office/developer-program/
microsoft-365-developer-program.

•	 The section on federated identity uses AAD B2C. This is a special version of AAD
that you need to create separately:
https://docs.microsoft.com/en-us/azure/active-directory-
b2c/tutorial-create-tenant.

For lab purposes, all of the samples in this chapter are possible to test free of charge,
but regional-specific requirements might need the use of a credit card for verification
purposes.

Please visit the following link to check the CiA videos: https://bit.ly/3qDiqYY

Code for this chapter can be found at https://github.com/PacktPublishing/
ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2008

Understanding authentication concepts
Most of us have an understanding of what we mean when we say ''identity'' in everyday
speech. In .NET, and coding in general, we need to be more specific before letting a user
into our apps. Identity in this context encompasses multiple concepts with different
actions and mechanisms along the way to establish who the user is and what they are
allowed to do in our systems.

The first piece of the identity puzzle is authentication. In documentation and literature,
you will often find this shortened to AuthN. Authentication is about answering the
question of who you are. Analogous to the real world, this carries different levels of trust,
depending on how this question is answered.

https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://portal.azure.com
https://docs.microsoft.com/en-us/office/developer-program/microsoft-365-developer-program
https://docs.microsoft.com/en-us/office/developer-program/microsoft-365-developer-program
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-tenant
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-tenant
https://bit.ly/3qDiqYY
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2008
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2008

Understanding authentication concepts 319

If you met someone you didn't know at a party and asked them what their name was,
you would probably be happy with whatever they answered without further verification.
You would, however, most likely not be happy with implementing a login function on a
website where the user could get away with typing only a username to log in.

A real-life example would be asking someone to provide identity papers – this could be a
national ID card, driver's license, passport, or something similar. On websites, the most
common method is providing a combination of a username and a secret only you know
(for instance, a password).

The simplest form of implementing this in a web app is to use basic authentication,
which is part of the HTTP specification. This works by the client side appending a header
to the HTTP request with credentials encoded as a Base64 value. In a console app, it
would look like this:

static void Main(string[] args)
{
 var username = ''andreas'';
 var password = ''password'';
 var byteEncoding = System.Text.UTF8Encoding.UTF8.GetBytes(

 $''{username}:{password}'');
 var credentials = Convert.ToBase64String(byteEncoding);

 Console.WriteLine(credentials);

 HttpClient client = new HttpClient();
 client.DefaultRequestHeaders.Authorization = new

 AuthenticationHeaderValue(''Basic'', credentials);
 var response = client.GetAsync(''https://localhost:5001'');
}

The credentials will always be YW5kcmVhczpwYXNzd29yZA== with no random
element, so the main benefit of transferring it this way is for encoding purposes. Let's have
a quick look at what Base64 is before moving on.

Base64 encoding
All of us are familiar with Base10 (usually called decimal) as this is what we use when
doing ordinary arithmetic – we use 0–9 for representing numbers. In computing, Base16
is also often used under the name hexadecimal. Since the numbers only go up to 9, we use
letters in addition, so A=10, B=11, and so on up to F=15. Base64 takes this even further
by using A-Z, a-z, 0-9, and the + and / characters, with = as a special padding character
(to ensure a string is always of a predictable length).

320 Working with Identity in ASP.NET

We will not dive into the algorithm of how to convert characters, but as demonstrated in
the previous snippet, it will turn something that is human-readable into something that,
while still technically readable, is hard to interpret just by looking at it. The main benefit
of encoding the data this way is that both plain text and binary data can be transferred
without corruption even if you use non-printable or non-readable characters. The HTTP
protocol does not, by itself, account for all characters, so for a password with special
characters, it might not be correctly interpreted on the server side if you transfer it
without encoding.

Base64 is not a form of encryption, so you cannot trust it for secrets as such and it can
be considered plain text even though you, as a human, are not able to decode it on the
fly. This also means that using basic auth without HTTPS is an insecure authentication
mechanism. Using TLS/SSL to secure the transport greatly improves on this, but it still
relies on sending the password over the wire.

With this in the back of our minds, it follows that we are able to decode the Base64 string
on the other end of the transmission, and the corresponding server part would look like
this:

public String Get()
{
 var authHeader = HttpContext.Request.
 Headers[''Authorization''];
 var base64Creds = AuthenticationHeaderValue.Parse

 (authHeader).Parameter;
 var byteEncoded = System.Convert.
FromBase64String(base64Creds);
 var credentials = System.Text.Encoding.UTF8.GetString(

 byteEncoded);

 if (credentials == ''andreas:password'')
 {
 return ''Hello Andreas'';
 }
 else
 {
 return ''You didn't pass authentication!'';
 }
}

Understanding authentication concepts 321

Run the server first, then the client, and you'll get some output:

dotnet run
Base64 encoded: YW5kcmVhczpwYXNzd29yZA==
Response: Hello Andreas

It might not surprise you that this implementation is a bad one since we are hardcoding
the username and password in the authentication code. The obvious choice at this point
would be to move that into a database and do a lookup instead. That leads us to us calling
out one of the most egregious identity implementation errors you can commit – storing
passwords directly in the database. Never, ever store the password in the database. Period.
You should store a hash of the password that is not reversible and calculate whether the
password entered matches what is stored in the database. That way, an attacker will not as
easily be able to extract the passwords should they get hold of the database.

This begs the question of what a hash is in this context, so let's cover that next.

How hashing works
A hashing function is an algorithm for converting one value into another one, commonly
used for the optimization of lookups in data structures or verification of the initial value.
For instance, if we were to create a very basic hashing algorithm, we could use number
replacements for characters to create a hash for a given string. Let's say A=1, B=2, and
so on. The Password string would then be 16 1 19 19 23 15 4 (each number
represents a single character; spaces added for readability). Let's then add these digits and
divide by the number of characters – (16 + 1 + 19 + 19 + 23 + 15 + 4) / 8
= 12.125. Going with the integer part only, we end up with 12.

Instead of storing your actual password, we would store the value 12. When we type in
Password as the password, we are able to compute the hash again and compare it against
the stored value. It's also great because it is not reversible – even if the algorithm is known,
it is not possible to reverse engineer the number 12 to end up with Password, so a copy
of the database is not going to help with figuring out the passwords.

Even if you're not a mathematical genius, you will probably spot that this algorithm is
weak. With the simple substitution scheme we use, it is fairly easy to create a string that
will also produce 12 as the value and thus be valid. A good hashing algorithm should
produce unique values so that two different passwords are not likely to have the same
hash. Luckily, Microsoft has implemented a number of hashing algorithms for .NET
already, so you do not have to roll out your own.

322 Working with Identity in ASP.NET

If we were to illustrate this with pseudo-code (we will not compile since we have not
implemented database lookups), it would look as follows:

var credentials = System.Text.Encoding.UTF8.
GetString(byteEncoded);

//Split the credentials into separate parts
var username = credentials.Split('':'')[0];
var password = credentials.Split('':'')[1];

//Bad
if (db.CheckUser == true && db.CheckPassword == true)
{
 return $''Hello {username}'';
}

//Good
var myHash = System.Security.Cryptography.SHA256.Create();
var hashEncoder = System.Text.UTF8Encoding.UTF8;
var byteHashedPassword =
 myHash.ComputeHash(hashEncoder.GetBytes(password));

System.Text.StringBuilder sb = new System.Text.StringBuilder();
foreach (Byte b in byteHashedPassword)
 sb.Append(b.ToString(''x2''));

var hashedPassword = sb;
if (db.CheckUser == true && db.CheckHashedPassword == true)
{
 return $''Hello {username}'';
}

By now, you might be thinking that there's a lot that goes on in authentication, and you
are spot on. In fact, basic authentication is not really recommended to use, but it should
hopefully have given you an idea of what authentication is. We will show some better
techniques after explaining a close companion of authentication, called authorization.

Understanding authorization concepts
The second piece of the identity puzzle is authorization, usually shortened to AuthZ.
Where AuthN is about finding out who you are, AuthZ is about what you are allowed to
do.

Understanding authorization concepts 323

Going back to the real world and how things work there, let's for a moment consider
international air travel. Assume for simplicity's sake that all international travel requires
you to show a passport. If you don't have a passport with you, this will be the same as not
being authenticated (unauthenticated) and you will not be allowed into the destination
country.

If you have a passport, the relevant authorities will examine it by asking the following
questions:

•	 Is it issued by an actual country? (Unfortunately, ''.NET-land'' is not recognized by
the United Nations.)

•	 Does it appear genuine, with watermarks, biometric markers, and so on, or does it
look like something you printed at home?

•	 Can the issuing country be trusted to have good procedures in place for issuing
passports?

If you pass these, you will be authenticated but you might not be able to move on to
baggage claims yet. There is a new round of questions:

•	 Are you a citizen of a country the destination accepts travelers from?

•	 Are you from a country requiring a visa and if so, do you have one with you?

•	 Are you a convicted criminal?

•	 Are you a known terrorist? (The airline should probably check this before letting
you on the plane in the first place, but they might have missed it.)

The details will vary depending on which country you would like to get into, but the point
is the same. While your identity checks out, there are still other mechanisms in place for
giving an approval stamp.

You might have recognized a similar pattern in web apps. For example, if you log in with
John as the username, you have the permissions of a regular user and can do database
lookups, edits, and so on. Whereas if you login with JohnAdmin as the username, you
are given administrative permissions and can access system-wide server settings and
whatnot. Revisiting the authentication code from the previous section, we would extend
the pseudo-code to something like this:

public String Get()
{
 var authHeader = HttpContext.Request.
Headers[''Authorization''];
 var base64Creds =

324 Working with Identity in ASP.NET

 AuthenticationHeaderValue.Parse(authHeader).Parameter;
 var byteEncoded = System.Convert.
FromBase64String(base64Creds);
 var credentials =System.Text.Encoding.UTF8.
GetString(byteEncoded);

 //Split the credentials into separate parts
 var username = credentials.Split('':'')[0];
 var password = credentials.Split('':'')[1];

 //Password hashing magic omitted
 ...
 //Authentication code omitted
 ...

 var userrole;

 if (db.CheckRole == ''Admin'')
 {
 userrole = ''Admin'';
 }
 if (db.CheckRole == ''User'')
 {
 userrole = ''User''
 }
 else
 {
 return ''You didn't pass authentication!'';
 }

 return $''Hello {userrole}'';
}

Even though this is also pseudo-code where we're missing the role lookup, we can see how
it adds an additional layer when we introduce authorization. It could be that your web app
might not need to distinguish between roles, but the point we are making here is one we
have been building up to over a couple of pages now.

Do not implement your own identity solution from scratch (or based on this sample
code).

This is not to discredit the knowledge and competency of the readers of this book; it is a
general best practice that this should be done by those who have it as a full-time job who
have access to a team reviewing and testing everything with a critical eye.

Understanding authorization concepts 325

Microsoft has included a template in Visual Studio for a SQL-backed web app that
implements a similar identity setup:

1.	 Start Visual Studio and select Create a new project.

2.	 Select the ASP.NET Core Web Application template and hit Next.

3.	 Name the solution Chapter_08_DB_Auth and select a suitable location for this
book's exercises (such as C:\Code\Book\Chapter_08) and click on Create.

4.	 Select the Web Application (Model-View-Controller) option and click Change
under Authentication. Make sure you select Individual User Accounts and Store
user accounts in-app before clicking OK, followed by Create:

Figure 8.1 – Individual user accounts authentication

5.	 If you take a look at the Data folder, you will see the code that generates a database
where the user accounts are stored as shown in Figure 8.2:

Figure 8.2 – Migrations files in Visual Studio

326 Working with Identity in ASP.NET

6.	 Open up 00000000000000_CreateIdentitySchema.cs. It should be 200+
lines of code, and the user object looks like this:

migrationBuilder.CreateTable(
 name: ''AspNetUsers'',
 columns: table => new
 {
 Id = table.Column<string>(nullable: false),
 UserName = table.Column<string>(maxLength: 256,

 nullable: true),
 NormalizedUserName = table.Column<string>(maxLength:
 256, nullable: true),
 Email = table.Column<string>(maxLength: 256,

 nullable: true),
 NormalizedEmail = table.Column<string>(maxLength:
 256, nullable: true),
 EmailConfirmed = table.Column<bool>(nullable: false),
 PasswordHash = table.Column<string>(nullable: true),
 SecurityStamp = table.Column<string>(nullable: true),
 ConcurrencyStamp = table.Column<string>(nullable:
 true), PhoneNumber = table.Column<string>(nullable:
 true), PhoneNumberConfirmed = table.Column<bool>(

 nullable: false),
 TwoFactorEnabled = table.Column<bool>(nullable:
 false), LockoutEnd = table.
 Column<DateTimeOffset>(nullable: true),
 LockoutEnabled = table.Column<bool>(nullable: false),
 AccessFailedCount = table.Column<int>(nullable:
 false)
 },
 constraints: table =>
 {
 table.PrimaryKey(''PK_AspNetUsers'', x => x.Id);
 });

The names should be fairly self-explanatory, but as you can see, there is a little bit
more to it than a username and a hashed password.

Understanding authorization concepts 327

7.	 Taking a quick look at the configuration in Startup.cs, we can see where the
database is initialized and requires authentication to happen:

public void ConfigureServices(IServiceCollection
services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration.
GetConnectionString(''DefaultConnection'')));
 services.AddDefaultIdentity<IdentityUser>(options =>
 options.SignIn.RequireConfirmedAccount = true)
 .AddEntityFrameworkStores<ApplicationDbContext>();
 services.AddControllersWithViews();
}

8.	 Following this up by attempting to run the app, there should be a form for
registering an email address and defining a password. Figure 8.3 is an example of
signing up:

Figure 8.3 – Registering an individual user account

If you peek into the rest of the files that were scaffolded, you will notice that there is
actually a bit of code to make it all run, and then there's everything in the libraries you
don't see, solidifying why you would prefer not to do all of this yourself.

328 Working with Identity in ASP.NET

Templates like these used to be very popular years ago as they took away a lot of the
hard work and users were accustomed to register on every site they visited. While there's
nothing inherently wrong with using this – it's secure and maintained by Microsoft – it
has become less common now that there are other options.

We will resume our regular programming soon, but the previous code snippet provides
an entry point for us to segue into a topic that technically is not related to identity, but is
useful for understanding how different identity pieces play into .NET apps.

The role of middleware in ASP.NET and
identity
A lot of technologies and products start with a code name, and when Microsoft came up
with Project Katana, it certainly had a zing to the name. This project came about in 2013
to address a couple of shortcomings in .NET at the time.

We're not going to drag up old .NET code and point to flaws in the design here, but
even without going into the details, you can probably relate to the challenge of replacing
components in your code. Let's say, for instance, that you start out creating a utility for
controlling some smart light bulbs you have in your home. During troubleshooting one
day, you realize that it would be easier if you captured some information and logged it.
The quick-and-dirty method is to append lines to a file called log.txt. This works nicely
until you realize that you could use some insight into non-error conditions as well, such as
logging when the lights were turned on and off to create some stats for yourself.

This doesn't lend itself as easily to be logged in a text file when you want to use it outside
the app. So, you realize it could be nice to have in a database. Then you have to rewrite all
those calls to a file to log to a database instead. You get the picture.

It would be nice to have a more generic log.Info(''Lights out'') method that
did not care about the details. Since logging is a common concern in many apps, there are
a number of logging frameworks out there, but there's still a setup ceremony to it per app.

This chapter is about identity, so what's the connection, you say? Well, authentication and
authorization are also common use cases for apps. And so is URL routing in web apps,
caching, and a couple of other things as well.

Another facet of these components is that you most likely want to run them as early
as possible during the initialization of the app – loading the logging component when
something fails might be too late.

The role of middleware in ASP.NET and identity 329

That was an elaborate setup for saying that Microsoft has built an abstraction called
middleware. Project Katana actually covered four components, and this carries over for
the current implementation - host, server, middleware, and application.

The host part can be found in Program.cs and for a web app, it looks like this:

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }
 public static IHostBuilder CreateHostBuilder(string[] args)
=>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

If you compare this to the worker service we created in Chapter 2, Cross-Platform Setup,
you will notice similarities:

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }
 public static IHostBuilder CreateHostBuilder(string[] args)
=>
 Host.CreateDefaultBuilder(args)
 .UseWindowsService()
 .UseSystemd()
 .ConfigureServices((hostContext, services) =>
 {
 services.AddHostedService<Worker>();
 });
}

You're not able to turn any web app into a service by changing these lines, but notice how
the pattern is the same.

330 Working with Identity in ASP.NET

We've already mentioned, and peeked into, the Startup.cs file, which is where the
server and middleware components can be found.

The server and services are invoked by the runtime with this code:

public void ConfigureServices(IServiceCollection services)
{
 …
 services.AddControllersWithViews();
 …
}

The actual runtime might vary, as we've already seen, depending on whether you host in
IIS or Kestrel (which does not matter in this context).

The middleware is found in the next section of the file:

public void Configure(IApplicationBuilder app,
IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler(''/Error'');
 app.UseHsts();
 }
 …
}

This is called a pipeline, and it builds as a sequence – authentication goes before
authorization, for instance, but not all middleware is sensitive to which step it is loaded at.

Some of the middleware has a binary behavior – UseHttpsRedirection enables
exactly that, and if you don't want it, you simply remove it.

UseEndpoints lets you add specific endpoints you want to listen to:

app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: ''default'',
 pattern: ''{controller=Home}/{action=Index}/{id?}'');
 });

OAuth and OpenID Connect basics 331

The beauty of middleware and identity is that you can add custom middleware to the mix,
and since the usage is standardized, it is fairly pain-free to change afterward. We did not
implement basic auth as middleware, but the boilerplate added by the wizard in Visual
Studio for using a local database did.

This will become handy if we were to upgrade our identity implementation to be based on
OAuth, which will be covered next.

OAuth and OpenID Connect basics
Basic authentication is simple to implement, and if you need to work with legacy systems,
there's a good chance you will run into it. It's not recommended to start new projects
using basic authentication though.

There is no shortage of acronyms for protocols in the identity space, and .NET Framework
has relied upon different authentication and authorization protocols over the years. We are
not able to delve into all of them, nor to do a comparison of the strengths and weaknesses
of them.

The most popular set of protocols used for AuthN and AuthZ purposes these days is
OAuth and OpenID Connect (OIDC), so we will look at parts of both the theory and
practical implementations. OAuth is the base protocol and OIDC builds on top of this, so
there are some overlapping details we will get back to.

Looking back at basic authentication, we already mentioned that a drawback is the fact
that the passwords are transferred over the wire. Both the client and server side have
access to the actual password, which is, in many cases, more than they need. For instance,
a web app will certainly care about establishing whether you have an administrator role
before allowing you access to the administrative settings, but as long as the identity is
established, the password doesn't provide any value in doing this authorization step. That's
just extra data you need to protect.

OAuth decouples these parts so that the server side does not need to know the password.
For the client, it is more a case of ''it depends'' for how this is handled – if a password is
required, you can't avoid typing it somewhere. It all starts with what are called JSON Web
Tokens (JWTs), so let's cover that first.

JSON web tokens
With OAuth and OIDC, we don't rely on passing around username:password as the
key to the kingdom, but instead, we rely on passing around tokens. These tokens are called
JWTs, and pronounced jot/jots.

332 Working with Identity in ASP.NET

A JWT is formatted as JSON and contains three parts – a header, payload, and signature.
A sample JWT could look like this:

{
 ''alg'': ''RS256'',
 ''kid'': ''4B92FBAE5D98B4D2AB43ACE4198026073012E17F'',
 ''x5t'': ''S5L7rl2YtNKrQ6zkGYAmBzAS4X8'',
 ''typ'': ''JWT''
}.{
 ''sub'': ''john.doe@contoso.com'',
 ''nbf'': 1596035128,
 ''exp'': 1596038728,
 ''iss'': ''contoso'',
 ''aud'': ''MyWebApp''
}.[Signature]

If you have not seen anything like this before, you probably have (at least) two questions:

•	 What do all these things mean?

•	 How does this actually help?

The information in this token is called claims – so, for instance, the ''sub'' claim is
short for subject and has the value john.doe@contoso.com. This claim is usually the
user/username (it does not have to be in email format, but this is common).

The rest of the claims are as follows.

The header is as follows:

•	 ''alg'': The algorithm used for generating the signature

•	 ''kid'': Key identifier

•	 ''x5t'': Key identifier

•	 ''typ'': The type of the token

The payload is as follows:

•	 ''nbf'': Not before. The time from which the token is valid; usually the same
time as it was issued.

•	 ''exp'': Expiration time. The time the token is valid until. Usually an hour from
when it was issued (but this is up to the token issuer).

OAuth and OpenID Connect basics 333

•	 ''iss'': Issuer. The issuer of the token.

•	 ''aud'': Audience. Who the token is intended for; usually the app the token is
intended for.

This is just a minimal sample token – you can have more claims if you want to, and you
choose the format of these. If you want a ''foo'' claim with a value of ''bar'' that
only makes sense for your application, that is OK. Just be aware that the token does not
have an unlimited size – in enterprise environments, some developers try to include all
the groups the user is a member of. When the user is a member of 200+ groups, you
experience what is known as token bloat, which causes the token to be fragmented when
transferring over a network. In most cases, these packets are not reassembled correctly,
and things fall apart.

Passing the token to the server is similar to basic authentication in that we add an
authorization header where the token is Base64-encoded (token shortened for brevity):

Authorization: Bearer eyJhbGciOi...PDh4ck7Q

This is nifty as you can send more information than when passing the username and
password while still keeping the credentials out of the data transmission. It is called a
bearer token because anyone who possesses it can use it. This brings us back to question
number two – how is this better? The first impression you get is that any client can craft
their own token and that doesn't sound like a good mechanism.

There are two important actions in OAuth/OIDC transactions:

•	 Issuing a token: This is about controlling who gets a token and this will be
protected by one or more mechanisms.

•	 Validating a token: This is about checking that the token is trustworthy and what
the contents are.

Both of them are primarily based on using certificates – signing when issuing and
verifying when validating. (Note that this is not the same as certificate-based auth; we're
only focusing on the token itself here.)

Let's take a look at how this works in code.

How to generate/issue a token
In Chapter 2, Cross-Platform Setup, we showed how to generate a certificate, install it on
Windows and Linux, as well as reading it afterward. Building on this, we can use the same
certificate for signing a token.

334 Working with Identity in ASP.NET

To create an app that will generate a token, do the following:

1.	 Open up the command line and create a new directory (Chapter_08_
BearerAuthClient).

2.	 Run the dotnet new console command.

3.	 Run the dotnet add package System.IdentityModel.Tokens.Jwt
command.

4.	 We then need to add some code to Program.cs. First, we create the token (based
on a generic template):

static void Main(string[] args)
{
 jwt = new GenericToken
 {
 Audience = ''Chapter_08_BearerAuth'',
 IssuedAt = DateTime.UtcNow.ToString(),
 iat = DateTimeOffset.UtcNow.ToUnixTimeSeconds().

 ToString(),
 Expiration = DateTime.UtcNow.AddMinutes(60).
ToString(),
 exp = DateTimeOffset.UtcNow.AddMinutes(60).

 ToUnixTimeSeconds().ToString(),
 Issuer = ''Chapter 08'',
 Subject = ''john.doe@contoso.com'',
 };

Then, we set up/retrieve the certificates we use for signing:
SigningCredentials = new Lazy<X509SigningCredentials>(()
=>
 {
 X509Store certStore = new X509Store(StoreName.My,
 StoreLocation.CurrentUser);
 certStore.Open(OpenFlags.ReadOnly);
 X509Certificate2Collection certCollection =
 certStore.Certificates.Find(

 X509FindType.FindByThumbprint,
 SigningCertThumbprint,
 false);

 // Get the first cert with the thumbprint
 if (certCollection.Count > 0)
 {
 return new

OAuth and OpenID Connect basics 335

X509SigningCredentials(certCollection[0]);
 }
 throw new Exception(''Certificate not found'');
 });

The final piece is lining up the claims and creating the actual signed token:
IList<System.Security.Claims.Claim> claims = new

 List<System.Security.Claims.Claim>();
 claims.Add(new System.Security.Claims.Claim(''sub'',
jwt.Subject,
 System.Security.Claims.ClaimValueTypes.String, jwt.
Issuer));

 // Create the token
 JwtSecurityToken token = new JwtSecurityToken(
 jwt.Issuer,
 jwt.Audience,
 claims,
 DateTime.Parse(jwt.IssuedAt),
 DateTime.Parse(jwt.Expiration),
 SigningCredentials.Value);

 // Get the string representation of the signed token
and

 // print it
 JwtSecurityTokenHandler jwtHandler = new
 JwtSecurityTokenHandler();

 output = jwtHandler.WriteToken(token);
 Console.WriteLine($''Token: {output}'');
}	

Note that in order to focus on the important pieces, this is not the complete code –
check the GitHub repo for this chapter for the complete code.

5.	 Run the dotnet run command.

Your output will look similar to Figure 8.4:

Figure 8.4 – A JWT

336 Working with Identity in ASP.NET

This is not intended for you to read, but it is reversible as it is just Base64-encoded. The
great part is that your actual secret is not included, so even if someone were able to read it,
that's not a problem.

How to validate a token
Generating a token is nice and dandy, but unsurprisingly, we need a counterpart –
checking that the token is good and allowing or rejecting access based on this evaluation.
For this, we will also create a server-side code sample:

1.	 Open up the command line and create a new directory (Chapter_08_
BearerAuthServer).

2.	 Run the dotnet new console command.

3.	 Run the dotnet add package System.IdentityModel.Tokens.Jwt
command.

4.	 The following code goes into EchoController.cs:

[HttpGet]
public String Get()
{
 var audience = ''Chapter_08_BearerAuth'';
 var issuer = ''Chapter 08'';

 var authHeader = HttpContext.Request.Headers

 [''Authorization''];
 var base64Token = AuthenticationHeaderValue.Parse(

 authHeader).Parameter;

 JwtSecurityTokenHandler handler = new

 JwtSecurityTokenHandler();
 TokenValidationParameters validationParameters = null;
 validationParameters = new TokenValidationParameters
 {
 ValidIssuer = issuer,
 ValidAudience = audience,
 ValidateLifetime = true,
 ValidateAudience = true,
 ValidateIssuer = true,
 //Needed to force disabling signature validation
 SignatureValidator = delegate (string token,
 TokenValidationParameters parameters)
 {

OAuth and OpenID Connect basics 337

 var jwt = new JwtSecurityToken(token);
 return jwt;
 },
 ValidateIssuerSigningKey = false,
 };

 try
 {
 SecurityToken validatedToken;
 var identity = handler.ValidateToken(base64Token,

 validationParameters, out validatedToken);
 return ''Token is valid!'';
 }
 catch (Exception e)
 {
 return $''Token failed to validate: {e.Message}'';
 }
}

As in the previous code sample, parts have been left out for readability.

5.	 Run the dotnet run command.

6.	 Step back to the client-side code and add the following code:

HttpClient client = new HttpClient();
client.DefaultRequestHeaders.Authorization = new
 AuthenticationHeaderValue(''Bearer'', output);
var response =
 client.GetAsync(''https://localhost:5001/Echo'').
Result;
 Console.WriteLine(response.Content.
ReadAsStringAsync().Result.

 ToString());

7.	 Run the dotnet run command in this folder while the server part is running.

You should see an output that says Token is valid.
While there are terms in the server code that intuitively have a meaning, a little bit of
explaining of the procedure is probably warranted.

The basics are that we configure values for the issuer (whoever issued the token) and the
audience (who the intended recipient of the token is). We then configure the parameters
for validating the token; the aforementioned audience and issuer as well as the time stamp
of the token.

338 Working with Identity in ASP.NET

If the token is valid, we return a message indicating so, and if it fails, we return a different
message.

In this code, we disabled checking the signature, and that might seem counterintuitive.
You should always validate the signature – if not, anyone can generate a token that will
pass as valid as long as they figure out the right values to insert. The reason for disabling
this important piece of the puzzle is that the code becomes much more complex if we
want to do that. We need to cover some additional topics first before returning to an
approach that requires less complexity to get it right.

OAuth flows
It is all nice and dandy to be able to send a token to an API and have it validated, but you
might wonder how this would actually work in an app. We can't have a user type in the
details we used here, and even if we only did this on a server, there are no credentials
involved. That doesn't sound like something you would actually use in real life.

JWTs are a central piece of OAuth, but there is more to the protocols than the token.
OAuth consists of what we call ''flows'' that prescribe the steps on the journey to acquiring
and using said token. We will not be able to cover all the variants of these flows here, but
we will cover a few that are relevant to ASP.NET Core use cases.

There are a couple of terms we need to sort out that applies to all of the flows.

Instead of each application handling the issuing of tokens, we have a central service
known as an identity provider. This service usually verifies the credentials (password,
certificate, and so on) and takes care of issuing tokens. While this is technically something
you can implement on your own, it is highly recommended to go for an established
solution in the market (we will be taking a look at using Azure AD for this purpose).

When acquiring tokens, the client requests which permissions it would like. These
permissions are known as scopes and are embedded in the token as claims.

The flows described here drive the login for Facebook, Google, and Microsoft, so you have
most likely tried them out already even if you didn't give it much thought at the time.
(These providers support multiple flows to support different use cases.)

OAuth Client Credentials grant
The easiest flow to understand is probably the Client Credentials flow as this is the closest
to using a username and a password. You would register an application in the UI for the
identity provider you're using and get a client ID and a client secret. When you want to
acquire a token, you send these to an identity provider and indicate which permissions
you would like. The flow goes like Figure 8.5:

OAuth and OpenID Connect basics 339

Figure 8.5 – OAuth Client Credentials flow

A very important thing to note is that this flow is only intended for trusted clients. A
trusted client typically runs on a server where the code and configuration are not available
to the end user. This is typically a service account, or server-side-rendered web apps. The
client ID is not sensitive, but paired with the client secret, it potentially enables anyone
possessing it to extract information they should not have. If you have a client-side app
such as JavaScript that is downloaded to the browser, a mobile app, or something similar,
you should never use the Client Credentials flow.

The client secret is usually too long and complex for a user to remember and type in, so
for passwords, there are different flows.

OAuth Resource Owner Password Credentials
A flow that is similar to Client Credentials but intended for user credentials is the
Resource Owner Password Credentials (ROPC) flow. When using an external identity
provider, there will often be a predefined look and feel of the login experience and usually,
it's rendered as HTML in a browser. Even if there is an option to style it to your own
liking, it is not unusual that the people working with user experience will say that they
need to tweak some element a certain way for them to be happy.

340 Working with Identity in ASP.NET

At this point, you might be thinking it would be great if you could create all the visual
aspects yourself and deal with the authentication just like when you're implementing a
server-side authentication experience. Such an option exists with this flow, but you should
never admit to the designers that it exists. It is highly discouraged to use this flow, by
Microsoft and the identity community, because it is inherently less secure than handling
the credentials exchange directly at a specialized product for handling identity use cases.
The app takes on much more responsibility since it will have knowledge of the user's
password.

We only mention it here because it is useful to be aware of it even if it does not come
recommended.

OAuth Authorization Code grant
The recommended way to do authentication in a native app is a flow called the
Authorization Code flow. It might come off as slightly complicated the first time you run
into it, but there is a logic behind it. We need the user to enter their credentials manually,
but the app should not be aware of them. At the same time, we want the application to be
an entity as well when calling into APIs. A diagram would look like Figure 8.6:

Figure 8.6 – OAuth Authorization Code flow

Both the authorize and token endpoints are located on the identity provider.

OAuth and OpenID Connect basics 341

This diagram does not cover the low-level details, but a possible attack vector in
this scenario is that, for instance, on a mobile device, a malicious app might be able
to intercept the auth code and use it for its own non-approved purposes. You are
recommended to implement an extension to the flow called Proof Key for Code
Exchange (PKCE – pronounced pixie), which ensures only the right app can use a specific
auth code.

OAuth Implicit Grant flow
It is mostly clear what a classic web app is and what a classic native app means, but where
does something such as a JavaScript-based Single-Page Application (SPA) fit in? It is
sort of a hybrid in the sense that you have code supplied by the browser that is executed
locally. This means that you cannot consider it a trusted client. You will see many guides
referring to using the Implicit Grant flow for these purposes. It looks like Figure 8.7:

Figure 8.7 – OAuth Implicit Grant flow

The meaning of fragment here is that the token will be part of a URL when redirecting
back to the SPA instead of returning it in the body of the HTTP response. This is due to
how most SPAs don't ''jump between pages'' like non-SPA web apps and need to consume
data through the URL.

342 Working with Identity in ASP.NET

While there are use cases where an implicit grant is suitable, and it is being used in a lot
of places, the current recommendation is that auth code with PKCE is more suited for
most SPAs. Implicit Grant is less secure, so while it is functionally acceptable, it has other
drawbacks.

Note that if you are using libraries to provide this functionality, you should try to find out
which of the two flows it uses behind the scenes.

OpenID Connect
All of the previous flows focused on acquiring tokens that said ''you're allowed to access
this API.'' This is, of course, a very important scenario to solve, but if you try logging in to
a web app without touching an API, you often just want to know ''who signed in.'' For this,
we have the OIDC flow, or more correctly, a separate protocol building on top of OAuth as
seen in Figure 8.8:

Figure 8.8 – OIDC

The OIDC protocol has some other things included as well that make signing in easier as a
developer, which we will get back to in our code samples.

Integrating with Azure Active Directory 343

There are other OAuth flows as well, and it can be more elaborate than what we have
shown here, but it is out of the scope of this book to cover all the nuances of AuthN and
AuthZ.

These flows are no good without an identity provider, so in the next section, we will put
everything into context by using a popular provider.	

Integrating with Azure Active Directory
Chances are that if you have logged in to a corporate computer the past 20 years, you
have used Active Directory, whether you are aware of it or not. AD was introduced with
Windows Server 2000 and extended the domain concept introduced in Windows NT 4.0
to provide a complete implementation of centralized identities. When you logged in to
your Windows desktop, it provided fairly pain-free access to file shares and servers in an
organization as long as you were seated in the office.

With AD, you need at least a couple of servers on-premises and accompanying
infrastructure. This isn't feasible in the cloud world of today, but Microsoft built upon
what they had to provide Azure Active Directory (AAD) as a cloud identity provider,
breaking free from the constraints of physical locations at the same time.

AD is based on older identity protocols, so the OAuth flows and OIDC are not natively
supported, but require the use of Active Directory Federation Services (ADFS) as an
additional service to support what we just described. This does not carry an extra cost
over a Windows Server license, but it is recommended to have dedicated servers for this
service.

Conversely, AAD was built with the newer protocols in mind, so it does not support the
older protocols without additional components.

This means that it is likely that if you want to migrate an existing on-premises app with
AD support to AAD, you need to do some rewriting of the identity stack. We will not
cover this, but rather go straight to the newer protocols. AAD is based on open standards,
and you can fairly easily replace it with other identity providers that comply with the
standards, so this isn't a Microsoft lock-in either.

AAD in its basic form is free. There are some advanced security features you don't get
for free, and you are limited to 50,000 objects, but this should be sufficient even for many
production deployments. Per the technical requirements listed at the beginning of the
chapter, we assume you have an AAD tenant for these samples, so you should sign up now
if you haven't done so already.

344 Working with Identity in ASP.NET

Using AAD unlocks a range of options in the Azure portal. You can, for instance, control
whether all the flows we described should be available or whether only a subset is used. In
addition, you can specify which users have access, what other data sources the application
can access, and more.

If you have an existing web application, it is possible to add support for AAD to this, but
to simplify matters, we will be creating a Blazor app from scratch with the wizard in Visual
Studio doing the backend configuration in Azure for us:

1.	 Start Visual Studio 2019 and select Create a new project.

2.	 Select Blazor App and click Next.

3.	 Name the solution Chapter_08_AADAuth.

4.	 Click Change under Authentication.

5.	 Select Work or School Accounts and select Cloud - Single Organization as shown
in Figure 8.9:

Figure 8.9 – Work or School Accounts

6.	 Type in the domain name of the AAD tenant you will be using. You will be
prompted to sign in if you haven't done so before.

7.	 Make sure you select Blazor Server App and that you have checked Configure for
HTTPS before clicking Create.

Integrating with Azure Active Directory 345

If you try running the app, the first thing that will hit you is a sign-in form provided by
Microsoft as seen in Figure 8.10:

Figure 8.10 – AAD sign in

After typing your username followed by the password, the next thing is a request for
permissions as shown in Figure 8.11:

Figure 8.11 – Consent notification

346 Working with Identity in ASP.NET

Provided you click the Accept button, the app will open and in the upper-right corner,
you will be greeted with your name. Seems easy enough, but let's take a look at what's
going on in the code before adding some more functionality.

If you open Startup.cs, you might notice some code you haven't seen so far:

public void ConfigureServices(IServiceCollection services)
{
 services.
AddMicrosoftIdentityWebAppAuthentication(Configuration,
 ''AzureAd'');
 services.AddControllersWithViews()
 .AddMicrosoftIdentityUI();
 services.AddAuthorization(options =>
 {
 // By default, all incoming requests will be authorized
 // according to the default policy
 options.FallbackPolicy = options.DefaultPolicy;
 });
 services.AddRazorPages();
 services.AddServerSideBlazor()
 .AddMicrosoftIdentityConsentHandler();
}

In a previous section, we mentioned how easy it is to swap out identity middleware and
we can see here how the startup pipeline has seen the addition of middleware both for
handling identity and the related UI.

If we take a look at appsettings.json, we can see where our specific configuration is
stored:

{
 ''AzureAd'': {
 ''Instance'': ''https://login.microsoftonline.com/'',
 ''Domain'': ''contoso.com'',
 ''TenantId'': ''tenant-guid'',
 ''ClientId'': ''client-guid'',
 ''CallbackPath'': ''/signin-oidc''
 },

You might find it slightly unfriendly that you are hit with a login prompt before even
seeing the web page. There are a lot of pages that offer a default experience when you're
not logged in where functionality is unlocked when signing in.

Integrating with Azure Active Directory 347

This is controlled by a couple of lines of code in Startup.cs:

//Comment out the line below like this
//services.AddRazorPages();

//And replace with this
services.AddRazorPages(options =>
{
 options.Conventions.AllowAnonymousToPage(''/_Host'');
});

Be aware that this effectively shuts off authorization for all pages in the Blazor app, so
you need to enable it for the pages where you need it. (The details of how you change
the default behavior varies between the different view engines – MVC, Razor Pages, and
Blazor.)

You can replace the contents of Index.razor with the following code:

@page ''/''

<AuthorizeView>
 <Authorized>
 Hello, @context.User.Identity.Name!
 <table class=''table''>
 <thead>
 <tr>
 <th scope=''col''>Claim Type</th>
 <th scope=''col''>Claim Value</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var claim in context.User.Claims)
 {
 <tr>
 <td>@claim.Type</td>
 <td>@claim.Value</td>
 </tr>
 }
 </tbody>
 </table>
 </Authorized>
 <NotAuthorized>
 <p>For full functionality please log in</p>
 Log in
 </NotAuthorized>
</AuthorizeView>

348 Working with Identity in ASP.NET

This will print all the claims in your token, which only makes sense when logged in,
and provide a link for logging in when you have not authenticated yet. This approach is
suitable for when you need a page to be available both for logged-in and anonymous users.

If you want to block all the content of a page, you can do this (in Counter.razor) by
adding the [Authorize] attribute:

@page ''/counter''
@attribute [Authorize]

<h1>Counter</h1>

Users who are not logged in will simply see a message that they are not authorized.

There are a multitude of ways to configure this. You can create policies that require specific
claims to be present, you can create roles that control access to a view, and more. We don't
recommend making it more complex than necessary though, especially when starting out.
It can be cumbersome to troubleshoot, so get the basics right first.

Understanding single tenancy versus multi-tenancy
In the wizard, we chose Cloud - Single Organization, but if you checked the dropdown,
you probably noticed Cloud - Multiple Organizations as well. We should probably
explain those.

An organization here is an AAD tenant. This means that if your company structure has
multiple tenants, this is considered to be multiple organizations even though it may be
only one legal organization. It is a purely technical definition.

When you create a single organization application, that means that only users of one
specific AAD tenant will be able to log in, and the data consumed is primarily data
constrained to this tenant. If you build an app that is only ever to be consumed by you and
your co-workers, this is a good choice as there will be a logical boundary and you don't
end up spilling data into other organizations.

For multi-org apps, there are a couple of reasons behind you would want to change the
configuration. Let's say we have a web shop selling computer supplies to businesses.
We make the assumption that most of our customers have AAD already – instead of
implementing our own user database, we offer sign in with AAD from customers' tenants.
Even though we have a shared database of our sales, we can enforce that, for example, only
users signing in from contoso.com can access the orders tagged with Contoso as the
company name.

Integrating with Azure Active Directory 349

A slightly different setup would be that we are an ISV that sells a piece of software to
businesses. If a company is already using AAD, single sign-on would usually be high
on their wish list. The app can be architected to create the illusion of being for one
organization, but it can reuse a common set of user administration across different
companies.

The default setting in a multi-tenant app is that all tenants in AAD are allowed to
authenticate. It is possible to restrict this if you want to by editing the token validation
parameters, but the most important part of this is that you need to figure out the
authorization setup as well.

Understanding consent and permissions
You were asked to grant permissions when running the app, but we didn't really explain
this part. The basic concept should be easy to grasp – your AAD account potentially
unlocks access to a lot of data if you use other Microsoft services, such as Office 365. We
don't want an app to grab whatever it desires, so as a safeguard, the app has to request
access and it has to be granted.

There are two types of permissions:

•	 Delegated permissions are permissions that are valid in a user context. For
instance, if an app wants to read your calendar, you as the user has to grant this.
Your consent is only applicable to you – it does not enable the app to read other
users' calendars.

•	 Application permissions are permissions that are valid in the broader app context
– often in a backend. Say, for instance, the app needs to be able to list all users in
the organization – this is not data that is specific to you. This permission needs to
be granted by a global admin. This means that if you are not a global admin, and
the app cannot function without these permissions, you cannot use the app before
someone in the organization with the appropriate role consents.

As we mentioned previously, the technical term in code for these permissions is scope.
A default OIDC flow requests the offline_access and User.Read scopes, and
if you want to read the calendar, you would add Calendars.Read. This is found in
Startup.cs:

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthentication
 (OpenIdConnectDefaults.AuthenticationScheme)
 .AddMicrosoftIdentityWebApp(options =>

350 Working with Identity in ASP.NET

 {
 Configuration.Bind(''AzureAD'', options);
 options.ResponseType = ''code'';
 options.SaveTokens = true;
 options.Scope.Add(''offline_access'');
 options.Scope.Add(''User.Read'');
 options.Scope.Add(''Calendars.Read'');
 });
…

Note that while you will not be prompted again to consent to the same set of permissions
between separate logins, you will need to re-consent if the app requests more scopes than
what you originally consented to.

You might be thinking – how do we figure out what the scopes are named? If you locate
the app registration in the Azure portal, you can browse the list dynamically as shown in
Figure 8.12:

Figure 8.12 – Permissions list in the Azure portal

For Microsoft APIs, it is, of course, also listed in the online documentation, so you don't
have to take a guess as to what the permission is called.

Having permission to read the calendar is helpful, but this does not mean that calendar
entries start pouring in by themselves. That requires more code. We need to elaborate on a
couple of concepts first, though.

Integrating with Azure Active Directory 351

Every user in an AAD tenant can authenticate and acquire a token. This is done through
the AAD endpoints, and in the code we used, this was done with the Microsoft.
Identity.Web library. This is intended for backend usage, such as web apps running
server side (we used Blazor Server) and protected web APIs.

To acquire tokens on a client, we use a different library, called Microsoft Authentication
Library (MSAL), which can run on native apps in C#, JavaScript-based web apps, and
so on. It works with the same endpoints but implements different OAuth flows. When
searching the internet, you might also come across a library called ADAL, which is the
older and deprecated library; you should not be using it any longer.

Calendar data is dependent on having an Office 365 license. This data is exposed through
Microsoft Graph, which is a gateway for a number of Microsoft services providing a
coherent API surface. To interact with the Microsoft Graph, you can use the Microsoft
Graph NuGet package after using one of the aforementioned libraries to acquire a token.

With that covered, we can circle back to the question of how to read the calendar entries.

The client has already acquired a token, so the first approach would probably be to
think that this can be leveraged fairly easily. The token is not directly accessible to the
app though, as it is stored in the browser session, so you would need to retrieve it with
some extra steps. Microsoft has fortunately made these steps much easier with the
Microsoft.Identity.Web library.

Behind the scenes, the library invokes an OAuth flow called On-Behalf-Of (OBO). We're
not painting the full picture of the flow here, but the high-level view is that the app first
lets the user authenticate before using the token to perform a second call to the identity
provider authenticating as itself as well. This enables the app to build out more complex
scenarios when you have a lot of backend APIs.

To make this work, we have to do a couple of things:

1.	 Go to the Azure portal and locate the app registration in AAD.

2.	 Go to the API Permissions blade and click Add a permission.

3.	 Select Microsoft Graph, the Delegated permissions permission type, and locate
Calendars.Read and Calendars.ReadWrite in the list.

4.	 Click Add permission.

5.	 Go to the Certificates and secrets blade and click New client secret. Give it a name
such as MySecret and select when it expires, before clicking Add.

6.	 Make a copy of the secret immediately as it will not be retrievable after navigating
away from the page.

352 Working with Identity in ASP.NET

7.	 Add new configurations to appsettings.json:

''AzureAd'': {
 …
 ''ClientSecret'': ''copied from the portal'',
 ''CallbackPath'': ''/signin-oidc''
},
''Graph'': {
 ''BaseUrl'': ''https://graph.microsoft.com/v1.0'',
 ''Scopes'': ''user.read calendars.read calendars.
 readwrite''
},
''Logging'': {

8.	 Go back to Startup.cs and change the code we added previously to look like
this:

string[] initialScopes = Configuration.
GetValue<string>(''Graph:Scopes'')?.Split(' ');
 services.
AddAuthentication(OpenIdConnectDefaults.

 AuthenticationScheme)
 .AddMicrosoftIdentityWebApp(Configuration.
GetSection(''AzureAd''))

.EnableTokenAcquisitionToCallDownstreamApi(initialScopes)
 .AddInMemoryTokenCaches()
 .AddMicrosoftGraph(Configuration.
GetSection(''Graph''));

9.	 Since this is a Blazor app, we will add a page called Calendar to show the calendar
entries. The first part is adding the following at the top:

@page ''/Calendar''
@using Microsoft.Graph
@inject Microsoft.Graph.GraphServiceClient GraphClient

The injected GraphClient takes care of passing along the token you need to call
Microsoft Graph.

Integrating with Azure Active Directory 353

10.	 You need a code section to actually call the graph:

@code{
 private List<Event> eventList = new List<Event>();

 protected override async Task OnInitializedAsync()
 {
 try
 {
 var events = await GraphClient.Me.Events.Request()

.Select(''subject,body,organizer,start,end,location'')
 .GetAsync();

 eventList = events.CurrentPage.ToList();
 }
 catch (Exception ex)
 {
 var error = ex.Message;
 }
 }
}

11.	 Then, you need to print it all out, as shown in the following code block:

<AuthorizeView>
 <Authorized>
 <table class=''table''>
 <thead>
 <tr>
 <th scope=''col''>Subject</th>
 <th scope=''col''>Start</th>
 <th scope=''col''>Entry</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var entry in eventList)
 {
 <tr>
 <td>@entry.Subject</td>
 <td>@entry.Start.DateTime.ToString()</td>
 <td>@entry.End.DateTime.ToString()</td>
 </tr>
 }
 </tbody>
 </table>
 </Authorized>

354 Working with Identity in ASP.NET

 <NotAuthorized>
 <p>For full functionality please log in</p>
 Log in

 </NotAuthorized>
</AuthorizeView>

We wrap it inside AuthorizeView to avoid any errors arising from not being
logged in – if you don't log in, you're not getting any data, so it's not risky in that
sense to skip it, but we like messages making sense for the user instead of things not
working.

12.	 Running the app and manually appending /Calendar to the URL, you should see
a list of entries as shown in Figure 8.13:

Figure 8.13 – Calendar entries

Note that it is common when running in debug mode that you may have to log out and
back in again for things to work properly when working with tokens. This can be caused
by the browser storing a session while the token cache is emptied between runs (when
using the in-memory cache).

We've come a long way, but there are still a few things to look at, such as expanding
beyond your current AAD tenant.

Working with federated identity	
Since you integrated with a specific AAD tenant assigned to you, it's easy to perceive it
as your identity provider. Microsoft operates on a larger scale though, and on a technical
level, you are federating with an external identity provider.

So, what does this actually mean?

Working with federated identity	 355

Going back to our initial example from the real world, you could say that a passport is
an example of federated identity. Even if you are not the entity issuing passports, you
trust that there is a good procedure in place by the issuing authority and you accept it as
proof of identity. You could choose to not trust this identity and build your own system
for verifying that people are who they say they are, but it would most likely be time-
consuming and expensive if you even managed to provide the same level of authenticity.
How much of a hassle it is to order a passport in different countries probably varies, but
just imagine how unfriendly it would be as a traveler to acquire multiple passports in the
different countries you traveled to.

In the past couple of years, you have most likely seen an option for logging in with
Facebook or Google on a website you've visited. Instead of creating a new account, you
can click these buttons and as long as you accept that the website is able to read some of
your identity attributes, you're good to go. Sure, these providers probably have a lower
level of trust than a federal entity in your own country, but odds are they have invested a
decent amount of effort into making sure their user account database is secure and not too
easily hackable. And for you, as the user, they save you from the effort of coming up with
yet another password to remember.

Both passports and Google accounts are examples of federated identity. While your
application might have a user database for access and licensing purposes, you only have a
reference to their identity since that is provided by someone else that you trust to provide
authentication services.

What happens on a high level is that you create an account for the application in a control
pane for your chosen identity provider, where you provide a couple of relevant attributes,
and correspondingly, you configure metadata as in the previous section, pointing to the
identity provider.

.NET 5 and ASP.NET Core 5 provides libraries provides libraries for assisting you with
this, and it's not necessarily hard to do by itself. However, what happens during the life
cycle of your app is that you start with Google and Facebook and it's working. Then,
someone asks you to add Apple to make it easier for iOS users. And then you add a
provider that uses ''last name'' instead of ''surname,'' breaking your data model. Even if
your response is that you love a challenge, it could be that this is causing friction as your
login code gets bloated as you start adding more and more logic to handle it that requires
new builds and releases.

356 Working with Identity in ASP.NET

As you might be able to guess, this leads to the inevitable There's an Azure service for that.
There is a version of AAD called AAD B2C, which is designed to handle such scenarios.
The B2C part stands for business to consumer, but it's really about external identities
in general. The way it works is that you set up a nested federation where your app trusts
AAD B2C, and AAD B2C in turn trusts other identity providers. If you need to add a new
provider or customize claims, you can do so in Azure without recompiling your app.

There are actually two types of user accounts in AAD B2C: local and social. Social is
another term for federated in this context as it doesn't have to be an account on a social
network per se. The beauty is that there are several providers pre-created that can be easily
added by stepping through a wizard as you can see in Figure 8.14:

Figure 8.14 – Identity provider selection

If your provider is not on the list, you can add generic OIDC providers. If you want a
non-standard configuration, you can even add a non-B2C AAD tenant as an identity
provider.

The local account does not federate to other providers but is instead a specialized version
of AAD for adding individual accounts with any email address. A regular AD tenant is
usually an organization where it's normal that users can look up the details of other users,
be parts of groups, and so on. In a B2C tenant, each user is an island and cannot see other
users. If you remember back to the sample where we created local accounts in the form
of a database, you could say that this competes with that, but it's both way more powerful
and, in most instances, easier to use than maintaining your own database.

Different types of user journeys (sign up, sign in, password reset) can be configured
through wizards, and you can also replace the styling if you so wish.

Working with federated identity	 357

If you want to go deeper, there's also the option to use custom policies, which entails
diving into XML files for a coding-like experience. It offers great flexibility with the option
to call into backend APIs during the flows and more. Be warned that this can be quite the
opposite of user-friendly, so only use it if the wizard-driven policies don't cover your use
case.

While AAD B2C has a different feature set than regular AAD, the endpoints used for
acquiring a token are also compliant with standards, so it's a fairly easy job to adapt your
code.

In a basic form, you can actually use the same code as we used for authenticating with
regular AAD, and change appsettings.json to point to a B2C tenant with attributes
created in said tenant. This will actually work nicely if you only have one flow defined that
handles signing up and signing in. It will not work if you also want to provide options,
such as password reset and profile editing.

The recommended way to get started before you have a full overview of the AAD B2C
service is having Visual Studio generate things for you, by opting to use B2C as the
provider when choosing the authentication configuration during project creation in
Visual Studio. The choices can be found under Individual User Accounts and Connect to
an existing user store in the cloud as shown in Figure 8.15:

Figure 8.15 – AAD B2C authentication options

358 Working with Identity in ASP.NET

At first glance, it might appear like AAD B2C adds complexity for unclear benefits since
these things can be achieved directly in the code. To be clear – like so many other things,
there are good use cases and there are less-good use cases. The great thing is that it will
require very few changes to the code, should you want to use B2C, and most of the work
in AAD B2C can be ''outsourced'' to identity pros.

A note on UIs for identity
Whether you write your own identity implementation from scratch or rely on AAD, you
need a UI if the user is to type in a username and password. In general, there are three
different approaches to implementing this:

•	 Popups: You can break out a separate smaller window for the user to type in
credentials. Once they've been verified, the popups disappear and you're back in
the web app. There's nothing wrong with this method from a technical perspective,
but a lot of users have popups blocked in their browser and many perceive it as an
annoying UI.

•	 Redirects: The method we implemented when integrating with AAD was based
on redirects. You start at https://localhost, you get sent to https://
microsoftonline.com, and then back to https://localhost again. This
is a very common approach. It is easy to implement and supports the flows we have
described in a secure manner.

•	 Iframe: The sleekest method is probably to embed the login form as part of the web
app and keep the user in the same context. To make this work, you need to do some
tricks on the backend with cookies and sessions. This is not a problem when you
control everything, but it becomes a problem if you want to use federated identities.
Single-tenant AAD could in theory support Iframe, but doesn't do so at the time
of writing this book. Providers, such as Facebook and Google, do not support it,
due to security implications – for instance, creating login experiences intended
for harvesting passwords. In addition, the major browsers are implementing more
mechanisms for blocking third-party cookies to ensure privacy, so it may be blocked
there as well. Make sure you are on top of all the moving parts before attempting to
implement this UI.

Summary 359

Summary
This chapter took us on a journey from basic auth to federated identities. It started
with explaining what authentication and authorization are all about. There were details,
such as understanding what Base64 encoding and hashing are good for. The sample
implementations of AuthN and AuthZ intended to give you a better understanding
of what's going on, even though you will probably not implement or use all of these
techniques. The walkthrough of OAuth and introducing AAD should put you in a good
position to implement production-grade identity in your web apps.

Not every app needs to be super secure, but this should have set you up for web apps that
can be more personal than treating all visitors as anonymous users.

With identity covered, the next chapter will dive into another hot topic these days, as we
cover the ins and outs of working with containers.

Questions
1.	 What's the difference between authentication and authorization?

2.	 Which OAuth flow is the most common and recommended for frontend use cases
in web apps?

3.	 Why would you use AAD B2C?

Further reading
•	 The Microsoft identity platform documentation, available at https://aka.ms/

aaddev

•	 The Microsoft Graph landing page, available at https://developer.
microsoft.com/en-us/graph

https://aka.ms/aaddev
https://aka.ms/aaddev
https://developer.microsoft.com/en-us/graph
https://developer.microsoft.com/en-us/graph

9
Getting Started

with Containers
In the previous chapter, we covered identity and how it applies to ASP.NET 5. Identity is
core to web application development, so we covered several forms of authentication (who
you are) and authorization (what you are allowed to do). We covered Basic Authentication,
OAuth, OIDC, Azure Active Directory, and Federated Identity.

This chapter is about containers and the popular Docker platform. A container is a
package of software that includes code and all the dependencies required for it to run. This
technique of packaging software came from a need to reliably deploy and run software
from a developer's machine in testing and production environments. By using a container,
the same package is used in each environment, which greatly reduces the number of
things that can go wrong.

362 Getting Started with Containers

We will cover the following topics in this chapter:

•	 Overview of containerization

•	 Getting started with Docker

•	 Running Redis on Docker

•	 Accessing services running in a container

•	 Creating a Docker image

•	 Visual Studio support for Docker

•	 Multi-container support

By the end of this chapter, you will be familiar with containers, and you will have gained
practical experience with creating containers in Docker.

Technical requirements
This chapter includes short code snippets to demonstrate the concepts that are explained.
The following software is required:

•	 Visual Studio 2019: Visual Studio can be downloaded from https://
visualstudio.microsoft.com/vs/community/. The Community edition
is free and will work for the purposes of this book.

•	 .NET 5: The .NET framework can be downloaded from https://dotnet.
microsoft.com/download.

Make sure you download the SDK and not just the runtime. You can verify the installation
by opening a command prompt and running the dotnet --info cmd as shown in
Figure 9.1:

https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

Technical requirements 363

Figure 9.1 – Verifying the installation of .NET

As part of this chapter, we will install Docker. This may require some additional setup
depending on whether you are using Windows 10 or Mac. The installation instructions in
the Installing Docker section are written for Windows 10. In addition to the instructions
we provide in the chapter, please use the following resources:

•	 Docker Desktop on Mac: https://docs.docker.com/docker-for-mac/
install/

•	 Docker Desktop on Windows: https://docs.docker.com/docker-for-
windows/install/

The source code for this chapter is located in the GitHub repository at https://
github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/
master/Chapter%2009.

Please visit the following link to check the CiA videos: https://bit.ly/3qDiqYY

Hardware virtualization
The following instructions and corresponding images are written for a Windows 10
environment. Please see the Docker documentation for instructions for installing on a
Mac.

Note
For some steps, administrator privileges may be required.

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2009
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2009
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2009
https://bit.ly/3qDiqYY

364 Getting Started with Containers

Before installing any software, let's check whether hardware virtualization is supported.
Using Task Manager, view the Performance tab. Virtualization support is shown as
indicated in Figure 9.2:

Figure 9.2 – Virtualization is enabled

If hardware virtualization is not enabled, an error message like the following will be
shown:

Please enable the Virtual Machine Platform Windows feature and
ensure virtualization is enabled in the BIOS.

Hardware virtualization is enabled in the desktop BIOS. Please use the documentation
supplied by your motherboard manufacturer for instructions.

Technical requirements 365

In addition to hardware virtualization, the Hyper-V and Containers Windows features
must be enabled as shown in Figure 9.3:

Figure 9.3 – Windows features

That covers the basics of installation. The following two sections are added to help you if
you are running on a virtual machine and/or Windows Home.

Virtual machine installation
Installing Docker on a virtual machine (VM) is very similar to what we just did. The
Container and Hyper-V Windows features must be enabled. Additionally, virtualization
does have to be exposed to the virtual machine. This can be done by running the following
command (use your own virtual machine name):

set-vmprocessor -vmname vmname -exposevirtualizationextensions
$true

366 Getting Started with Containers

WSL 2 installation
If you are running Windows Home, you will also need to install WSL 2 to run Linux
containers. This requires the Virtual Machine Platform and Windows Subsystem for
Linux features to be enabled as shown in Figure 9.4:

Figure 9.4 – Windows Home features

With those features enabled, the latest WSL2 Linux kernel should be installed. This
can be done by downloading and running the package. Please use the link to the Linux
kernel update package for x64 machines Microsoft documentation: https://docs.
microsoft.com/en-us/windows/wsl/install-win10 for WSL2.

During the installation of Docker Desktop, you will see the following error message if
WSL 2 is not installed as shown in Figure 9.5:

Figure 9.5 – WSL 2 missing error message

Thankfully, Docker Desktop provides clear instructions on how to install the kernel.

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Overview of containerization 367

Overview of containerization
The challenge of getting software from a development machine to a production server
is harder than it sounds. Differences in the environment can range from hardware to
software. Containerization is one approach to addressing this. With containerization,
the application and all its dependencies are bundled into a single package or image. This
image can then be started, and the running image or instance is called a container.

To explain further, let's look at a traditional application as shown in Figure 9.6:

Figure 9.6 – Traditional application

The preceding figure illustrates a traditional application, where applications run on an
operating system hosted on infrastructure. An issue might arise with this approach when
an application requires different features of the operating system. It is not necessarily that
two applications will always require opposing features, but more that it becomes difficult
to reliably capture all the requirements of an application. In organizations involving
teams of developers and several environments, this becomes unruly without clear
documentation or tools to help manage the dependencies of an application.

368 Getting Started with Containers

VMs abstract away the underlying infrastructure to allow multiple VMs to run on a single
physical machine as shown in Figure 9.7:

Figure 9.7 – VMs

The previous figure shows a hypervisor being used to host several VMs. Each VM
contains the application and its own copy of the operating system to run the application.
This approach virtualizes the hardware used to run the VMs.

Containerization takes virtualization one step further and virtualizes the operating system
as shown in Figure 9.8:

Figure 9.8 – Containers

Getting started with Docker 369

The preceding figure shows Docker, a popular containerization technology, being used
to run multiple applications. Notice that with containerization, the application runs on
a shared host operating system. One advantage is that the size of a container is much
smaller than a VM. The startup of a container is also much faster than that of a VM. One
of the most significant advantages of containerization is that the release of software is
more predictable, as the application and all of its dependencies are bundled together into a
versioned, unchangeable package.

Getting started with Docker
To show a practical example of using containers, we will use the popular container
platform Docker. Docker was chosen because of its popularity, ease of use, and its position
as an industry leader in containerization. This section of the chapter will provide an
overview of Docker and instructions for installing Docker.

What is Docker?
Docker is a platform for operating system-level virtualization for managing and executing
packages of software referred to as containers. Each container is a bundle of software
and the libraries and configuration required to run the container. The bundle is called an
image, and images can be stored locally to the machine running Docker or in registries.
A Docker registry is a repository of images. A registry might require authentication; this
is called a private registry. Docker registries that don't require authentication are called
public repositories, and Docker Hub and Docker Cloud are two popular public Docker
registries. Let's look at a common workflow to illustrate what we have discussed so far as
shown in Figure 9.9:

Figure 9.9 – Docker registry

370 Getting Started with Containers

In a Docker registry, a collection of images is stored. In a Docker environment, let's say a
development machine, the pull command is used to bring a copy of the image into the
local environment. Then, the run command is used to create an instance of the image
called a container. The container can be stopped and started, and its state can be changed.
This means that if a container contains a database and the records in the database change,
these changes will exist if the container is stopped and started. The image, however, cannot
be altered once it is created. Multiple versions of an image can exist, though. This will
make more sense when we look at the practical examples.

Let's take this a little bit further and discuss a scenario where containers are developed,
tested, and then released to production. Each of these activities will be done in different
environments. This is one instance where having a central registry can help us as shown in
Figure 9.10:

Figure 9.10 – Docker workflow

Images are created in the Development Environment. In the previous figure, a commit
command is used to create an image from a running container. There are several ways to
create an image, and we will look at some later in the chapter. The image is then pushed
from the Development Environment to the Registry. From the Testing Environment,
the image is brought in from the registry using the pull command and the container is
started using the run command. Once the image has been tested and approved, the same
image can then be pulled from the registry and Registry in the Production Environment.

Getting started with Docker 371

Now that we have a high-level understanding of Docker, let's take a moment to discuss
some of its main components.

Image
The first step to understanding Docker is to distinguish between an image and a container.
An image is a versioned file that cannot be altered and really does not do anything. It is
a snapshot of our application, and once it is created, it cannot be altered. A container is
an instance of an image. A container has a state, for example, running or stopped, and a
container has its own state. In some ways, you can think of the relationship between an
image and a container in a similar way as the relationship in C# between a class and an
object.

An image can be thought of as being composed of layers. Each layer builds upon the
previous layer. For example, the first layer might set up the initial environment. To
illustrate, let's use the Ubuntu image, which is an image provided for the popular Linux
operating system. A subsequent layer would then be added to include some required
components – let's say a database engine such as Microsoft SQL Server. As we mentioned
earlier, there are several ways of creating a new image. In the previous section, we
mentioned that the commit command could be used, but let's talk about using
a Dockerfile.

Dockerfile
A Dockerfile is a text file that contains commands used to assemble an image. Using the
official Microsoft SQL Server as an example, the Dockerfile used to create the Microsoft
SQL Server Linux image (mssql-server-linux) comprises four commands.

Take a look at the Dockerfile used to create the image. This is in the public GitHub
repository at https://github.com/microsoft/mssql-docker/blob/
master/linux/mssql-server-linux/Dockerfile:

mssql-server-linux

Maintainers: Microsoft Corporation (LuisBosquez and twright-
msft on GitHub)

GitRepo: https://github.com/Microsoft/mssql-docker

Base OS layer: Latest Ubuntu LTS.

FROM ubuntu:16.04

Default SQL Server TCP/Port.

EXPOSE 1433

https://github.com/microsoft/mssql-docker/blob/master/linux/mssql-server-linux/Dockerfile
https://github.com/microsoft/mssql-docker/blob/master/linux/mssql-server-linux/Dockerfile

372 Getting Started with Containers

Copy all SQL Server runtime files from build drop into

image.

COPY ./install /

Run SQL Server process.

CMD ["/opt/mssql/bin/sqlservr"]

The first command, FROM ubuntu:1604, is an example where the first layer is specified
as the Ubuntu Docker official image. The next command, EXPOSE 1433, will make port
1433 available to the host operating system. This command is followed by COPY ./
install /, which will copy the SQL Server runtime. The last command starts the SQL
Server process: CMD ["/opt/mssql/bin/sqlservr"].

When the Dockerfile is executed, a new image will be created, composed of the
commands in the file. We will discuss the different commands later in more detail. The
purpose of this section is just to introduce the concept of a Dockerfile and how an image
is composed of layers.

Container
The running instance of an image, that is, a container, is lightweight, secure, and portable.
A container is lightweight because unlike a VM, it has access to resources exposed by the
underlying operating system. For example, if the host system can reach the internet, then
by default the container has access to the internet. Similarly, by default, a container has
full access to available RAM and CPU resources. A container is also isolated from other
containers and processes running on the host system. This is why port 1433 was explicitly
exposed in the Microsoft SQL Server example in the Dockerfile section. A Docker
container adheres to an industry standard, meaning it can be run on different platforms
and container engines.

Docker Engine
In this chapter, we will be using Docker Engine to run the containers via Docker Desktop.
This is important to note because containers follow the Open Container Initiative (OCI)
standard, meaning that different engines can be used to run the same images. For local
development, we might use Docker Desktop, but our testing environment might be hosted
in a cloud provider. In the next chapter, we will look at running containers in Azure using
Azure Container Instances.

Getting started with Docker 373

Docker Engine and Azure Container Instances are examples of powerful engines for
managing isolated containers. For more advanced scenarios, an orchestration engine
is required. Docker Swarm and Kubernetes are examples of orchestration engines that
support additional features such as scaling and load balancing, as well as features for
authentication and more advanced monitoring.

Now that we have an overview of Docker, let's install it.

Installing Docker
The installation for Docker Desktop can be found on the Docker website. Just download
the latest version and install it. Docker does provide comprehensive installation
instructions for Mac, Windows, and Linux at https://docs.docker.com/
get-docker/, so we will not repeat the instructions and requirements here.

In this chapter, we will be using Linux containers for a couple of reasons. The first is
that they tend to be smaller so they are quicker to download and start. The second is
to illustrate the power of .NET to be able to compile the same source to either Linux or
Windows containers.

Once Docker Desktop has been installed and has started, let's run some commands to
make sure things are working as expected. You can use command, Bash, or PowerShell
to run the Docker CLI commands in this chapter. First, let make sure Docker is up and
running by running docker version.

There are two parts to the response. The first shows the client as shown in Figure 9.11:

Figure 9.11 – Docker version client

Here you can see the version of Docker Desktop at the time of writing as well as the
operating system, Windows, that the client is running.

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

374 Getting Started with Containers

The second part is the server as shown in Figure 9.12:

Figure 9.12 – Docker version server

Notice the version of Docker Engine as well as the running architecture, linux, which
indicates that Linux containers can be run.

Another simple test to make sure that all is working is the docker hello-world
command. Give this a go and if everything looks okay and there are no errors, let's try
something a bit more interesting in the next section.

Windows Security Alert
Depending on your particular desktop configuration, you might get an alert asking
whether the Docker backend has access to the network as shown in Figure 9.13:

Running Redis on Docker 375

Figure 9.13 – Windows Security Alert

To complete the instructions in this chapter, Docker will need to be able to access Docker
Hub to retrieve images.

Running Redis on Docker
In this section, we will run the popular open source in-memory cache Redis. Redis is a
data structure store, meaning it stores things such as strings, lists, sets, sorted sets, and
hashes and supports queries against stored data. Redis has been developed for over a
decade, has a large community, and is worth checking out if you have not done so already.

Running Redis as a container for local development makes a lot of sense. By using a
container, we don't have to install Redis onto the machine or worry about security
permissions. With a container, the setup and security are already done. The limitation,
though, is that we only have access to some Redis options. If there is an option that is not
supported by the base Redis image, then the recommendation is to create custom Redis
images using the Redis image as a base.

Starting Redis
Start a Redis container using the run command:

docker run --name myRedis -p 6379:6379 -d redis

376 Getting Started with Containers

With this command, we are naming our container myRedis and specifying the redis
image to be pulled. This will pull from Docker Hub and we can see the image being
downloaded. Because we will be accessing this from an application in the next section, we
need to make sure the default Redis port 6379 is exposed using the -p option as shown
in Figure 9.14:

Figure 9.14 – Our docker run command for Redis

Once the command completes, Redis will be running in a container. You can see the
running container by using the docker container ps command as shown in Figure
9.15:

Figure 9.15 – The docker ps command

Another useful command is docker images, which shows the local images as shown in
Figure 9.16:

Figure 9.16 – docker images

The preceding figure shows the redis image with the latest tag.

In the next section, we will access Redis from a .NET application, but for now, let's
connect to the container and have a look around. We can connect to the container using
the docker exec -it myRedis sh command. Once we are in the container, we
need to enter in a Redis command mode by using the redis-cli command. The Redis
CLI will allow us to run commands against the cache.

Running Redis on Docker 377

Once we are in the Redis CLI, we will issue some commands to check that Redis is
working as expected. The first command, hset messageFromRedis "absexp"
"-1" "sldexp" "-1" "data" "Hello from Redis!", will create a string in
Redis in a format that will allow the .NET application to retrieve it. The good news is
setting and retrieving using the Redis SDK is much simpler. The second command, set
key1 value1, will add a string identified with key1 and a value of value1. The final
command, get key1, shows that the value of key1 can be retrieved as shown in Figure
9.17:

Figure 9.17 – Redis CLI

You can then exit Redis and the container.

In this section, we started up a Redis container and checked that it was running as
expected. In the next section, we will access Redis from another application. To be able
to do this, we need to determine the Redis cache address. To determine the IP address,
use the ipconfig command. If you are not running in a VM, you should see a network
belonging to DockerNAT. For example, you should see something like the following:

Ethernet adapter vEthernet (DockerNAT):
 Connection-specific DNS Suffix . :
 IPv4 Address. : 10.0.73.1
 Subnet Mask : 255.255.255.0
 Default Gateway :

On a virtual machine, look for a network belonging to WSL:

Ethernet adapter vEthernet (WSL):
 Connection-specific DNS Suffix . :
 Link-local IPv6 Address :
fe80::8411:e43d:c978:9e70%32
 IPv4 Address. : 172.23.160.1
 Subnet Mask : 255.255.240.0
 Default Gateway :

For the next section, record the IPv4 address as we will need it to connect to Docker.

378 Getting Started with Containers

Running ASP.NET Core in a container
In this section, we will create a simple ASP.NET Core application that accesses our Redis
container. We will then run the application in a container. The majority of this we will do
from the command line, but we will jump into Visual Studio to show some of the great
tooling available:

1.	 The first step is to create a new directory and create a basic .NET web application. In
the following Figure 9.18, we can see what ASP.NET projects are available by using
the dotnet new ASP.NET -l command:

Figure 9.18 – dotnet new ASP.NET -l

2.	 Next, we need to create a folder for our solution with the mkdir Chap9 command
and create an empty solution with the dotnet new sln command as shown in
Figure 9.19:

Figure 9.19 – dotnet new sln

Running ASP.NET Core in a container 379

3.	 Then we create another folder within the previous one called web with the mkdir
web command. Remember to change directory, for example, using cd web,
into the created folder. Create a new ASP.NET Core Empty project using the
dotnet new web command as shown in Figure 9.20:

Figure 9.20 – dotnet new web

4.	 The last step is to add the project to our solution as shown in Figure 9.21:

Figure 9.21 – dotnet sln add

Note
The extra steps to create the web inside the solution folder are to help us in later
sections. When adding Container Orchestration Support later, Visual Studio
will display our container-related files in a less confusing manner.

380 Getting Started with Containers

Now that we have the solution and project created, go ahead and make sure everything is
okay by running the project with the dotnet run command. You will need to do this in
the web project as shown in Figure 9.22:

Figure 9.22 – dotnet run

In a browser, go to http://localhost:5000 and you should be greeted by a familiar
message as shown in Figure 9.23:

Figure 9.23 – Hello World!

Now that we have our basic web application, we will change the application so it retrieves
a custom message from Redis.

Accessing Redis
Let's stop the running application – using Ctrl + C is fine to stop the dotnet application –
and edit some files. The first file to edit is web.csproj; using Notepad is fine. We want
to insert the following lines:

<ItemGroup>
 <PackageReference Include="Microsoft.Extensions.Caching.

 StackExchangeRedis" Version="3.1.8" />
</ItemGroup>

Running ASP.NET Core in a container 381

The edited file should look like this as shown in Figure 9.24:

Figure 9.24 – web.csproj

The next file to edit is the startup.cs file. I just used Notepad to add a new using
statement:

using Microsoft.Extensions.Caching.Distributed;

In the ConfigureServices method, we add our link to Redis. It is important to put in
your Redis IPv4 address:

services.AddStackExchangeRedisCache(option =>

 option.Configuration = "172.23.160.1");

The Configure method signature needs to be updated to allow the cache to be injected
into the method:

public void Configure(IApplicationBuilder app,

 IWebHostEnvironment env, IDistributedCache cache)

The final step is to replace the static "Hello World!" with our message from Redis:

await context.Response.WriteAsync(cache.GetString

 ("messageFromRedis"));

382 Getting Started with Containers

The following Figure 9.25 shows the final startup.cs file:

Figure 9.25 – Startup.cs

Run the application again and refresh the browser to see the updated message as shown in
Figure 9.26:

Figure 9.26 – Hello from Redis!

In this section, we created a new ASP.NET Core web application using an empty template
known as the Hello World template. We then added a popular package for connecting
to Redis from .NET applications, StackExchange Redis. This is the same client used by
large-scale sites such as Stack Overflow. Using this library, we had to add the cache to ASP.
NET's dependency injection. Our last step was to use the cache to retrieve a string from
our Redis cache running in a Docker container.

Running ASP.NET Core in a container 383

Adding container support
We will look at containerizing our ASP.NET Core application in two ways. The first way
will create a Dockerfile and commands to create our image and run our container. The
second approach will use Visual Studio.

Dockerfile approach
Starting in the root folder of our project, we will publish a release build using the dotnet
publish -c Release command. This will produce a build of our application so that it
is ready to copy to our container as shown in Figure 9.27:

Figure 9.27 – dotnet publish

In the release folder containing our application, we will create a Dockerfile.

Note
By default, Docker will look in the current folder for a file named
dockerfile without an extension.

I used Notepad for this and entered the following statements:

FROM mcr.microsoft.com/dotnet/core/aspnet:3.1-buster-slim
WORKDIR /app
COPY . .
EXPOSE 80
ENTRYPOINT ["dotnet", "web.dll"]

Remember the onion analogy from earlier? The layer that we will start with is one that
Microsoft has provided with ASP.NET already loaded. The next command states that we
are working in the app folder on the image we are creating. The copy command will copy
the contents of our current folder into the app folder of the image. We then make port 80
available outside our image. The final command states that .NET should run web.dll
when the container starts up. When our containers start, our ASP.NET Core application
should be started and listening on port 80.

384 Getting Started with Containers

After saving the file, let's build our image:

docker build . -t myweb

If you received an error stating that the file could not be found, then it is likely that you
named the file Dockerfile.txt. No problem – we can specify the filename using the
-f parameter:

docker build . -f Dockerfile.txt -t myweb

If all is well, then you will have a success message stating that the image was built and
tagged myweb:latest. You can view the images with the docker images command
as shown in Figure 9.28:

Figure 9.28 – docker images

And to start our image, we use the docker run command, mapping our local port
8080 to the container port 80:

docker run -p 8080:80 myweb

In a browser, we can then navigate to the web application and still see our message from
Redis as shown in Figure 9.29:

Figure 9.29 – ASP.NET Core in a container

We are, of course, just scratching the surface here, but it is a powerful illustration of how
easy containers are. So, can Visual Studio make the experience any simpler?

Running ASP.NET Core in a container 385

Visual Studio approach
In Visual Studio, open Solution Explorer. Go ahead and run the project, and if you are
prompted to save a solution file, go ahead and save it in the same folder as the project
file. Visual Studio has many features to support Docker container developers. The first
feature we will look at is the ability to add a Dockerfile for our project. This is located
in the Solution Explorer context menu under the Add submenu and is called Docker
Support…. This is shown in Figure 9.30:

Figure 9.30 – Docker Support…

386 Getting Started with Containers

By selecting this option, Visual Studio will prepare the project to be made into an image.
Visual Studio will ask whether the target image should be for a Linux or Windows
operating system as shown in Figure 9.31:

Figure 9.31 – Docker File Options

As our Docker Desktop is currently running Linux containers, select the default Linux
option. Several things will now happen. First, notice that a new file is created for the
project called Dockerfile as shown in Figure 9.32:

Figure 9.32 – Visual Studio Dockerfile

Go ahead and open the file and notice how there are similarities to the Dockerfile we
created in the last section. The main difference is this Dockerfile performs dotnet
build and dotnet release before copying the release to the image.

Running ASP.NET Core in a container 387

Also, notice that the run options have changed to show Docker as the run target as shown
in Figure 9.33:

Figure 9.33 – Visual Studio: Docker run target

If we run the project now, several things will happen. Visual Studio will show a new
window called Containers as shown in Figure 9.34:

Figure 9.34 – Visual Studio Containers window

This window shows both the running containers and the images on the local machine.
In the preceding figure, we can see that there are three containers currently running.
The container named web is this project container. You can also see the Redis container
named myRedis running, as well as a generated name, in this example, keen_volhard.
Take a moment to explore. For example, if you select the myRedis container, then you can
see that port 6379 has been mapped as shown in Figure 9.35:

Figure 9.35 – Visual Studio Containers window

388 Getting Started with Containers

Oh, and in case you were wondering, we have full debugging support with the running
container. In the Startup.cs file, put a breakpoint in the Configure method on the
line where we retrieve the string from Redis as shown in Figure 9.36:

Figure 9.36 – Visual Studio debugging support

When the project is run again, the debug is hit and we are able to investigate the running
objects as shown in Figure 9.37:

Figure 9.37 – Visual Studio debugging

We will discuss debugging in a later chapter in more detail, but our purpose is to show the
tight integration Visual Studio has with Docker and the running containers.

Docker multi-container support
In the previous section, we had a scenario where one container calls another container. We
achieved a call from the ASP.NET Core application to the Redis cache by using the host
network. This works but there are two significant drawbacks. The first is that the Redis
cache can be called by anyone with access to the host network. The second drawback is
that there is nothing indicating that our ASP.NET Core application requires Redis.

In this section, we will look at addressing both these drawbacks by using Docker
Compose. Docker Compose allows us to combine multiple containers into a single
definition. This will allow us to limit access to Redis as well as to indicate that Redis is a
requirement for our ASP.NET Core application. We could complete this section without
Visual Studio, but we will use Visual Studio to highlight some of the nice features that are
available.

Running ASP.NET Core in a container 389

Adding Container Orchestration Support
In the Solution Explorer, we have the option to add Container Orchestrator
Support. This is located in the context menu of a project under the Add sub-menu as
shown in Figure 9.38:

Figure 9.38 – Container Orchestration Support…

You will be prompted for the type of Container Orchestrator Support you
want. There are two options: Kubernetes/Helm and Docker Compose. The main
difference between the two use cases is whether you require a cluster of engines to host
the containers or a single engine. In most circumstances, a cluster would indicate separate
VMs or physical machines. In our scenario, we are only interested in hosting on a single
Docker Engine instance, so we will select Docker Compose as shown in Figure 9.39:

Figure 9.39 – Docker Compose

If prompted for the target operating system, select Linux. Also, Visual Studio will detect
that we have an existing Dockerfile in our project as shown in Figure 9.40:

Figure 9.40 – Creating a new Dockerfile

390 Getting Started with Containers

We don't mind overwriting our current Dockerfile, so select No.

Looking at the solution now, we will notice some new YAML files as shown in Figure 9.41:

Figure 9.41 – Visual Studio YAML

The docker-compose.yml file in the new docker-compose section is used to define
our orchestration. In this file, we will define the containers, networks, and additional
requirements of our orchestration. You will also notice that docker-compose.
override.yml is collapsed under the file. Don't worry about the details of what is in
this file, other than that it provides specifics about running the orchestration in Visual
Studio. What we are going to do is delete this file as it will make things simpler if we are
only looking at a single docker-compose.yml file.

Note
Be sure to delete the docker-compose.override.yml file to avoid
confusion later.

The default Docker Compose file specifies that we have one service called web and gives
the location of its Dockerfile:

version: "3.4"

services:

 web:

Running ASP.NET Core in a container 391

 image: ${DOCKER_REGISTRY-}web

 build:

 context: .

 dockerfile: web/Dockerfile

The version number in the file is significant as it indicates the supported Docker Engine
version. For example, 3.4 supports Docker Engine version 17.09.0 and newer. The
versions can be found at https://docs.docker.com/compose/compose-file/
compose-versioning/. Under services, we have one service named web. The
image to be used for the web service is specified as a combination of an environment
variable, ${DOCKER_REGISTRY}, and the word web. In new environments, there should
not be an environment variable set, so the image will end up being just web. The last thing
to point out is that context is a path to a directory and is used with the dockerfile
option. In our Docker Compose file, this will result in the Dockerfile being located in the
web directory.

Adding Redis to a Docker Compose file
The first thing we need to do is add our redis service to this orchestration. Remember to
be careful with indentation as YAML requires indentation rules to be followed. Under the
definition of the web service, let's create a new service, redis:

version: "3.4"

services:

 web:

 image: ${DOCKER_REGISTRY-}web

 build:

 context: .

 dockerfile: web/Dockerfile

 redis:

 image: redis

 ports:

 - 6379:6379

https://docs.docker.com/compose/compose-file/compose-versioning/
https://docs.docker.com/compose/compose-file/compose-versioning/

392 Getting Started with Containers

Notice that we are using the default port. When the file is saved, look in the
Output window for Container Tools or Build. You should see a Bind for
0.0.0.0:6379 failed: port is already allocated error, as you will still
have the previous Redis container running.

Adding an isolated network

What we want to do is run our new orchestration in isolation from the other example. To
do this, we need to define a network in the Docker Compose file. This is done simply by
adding the network definition to the end of the file and setting this network on the two
services:

version: "3.4"

services:

 web:

 image: ${DOCKER_REGISTRY-}web

 build:

 context: .

 dockerfile: web/Dockerfile

 networks:

 - chap9

 redis:

 image: redis

 networks:

 - chap9

networks:

 chap9:

Running ASP.NET Core in a container 393

These changes will define a new network that is isolated from the host machine. This does
mean we have to make some additional changes to get our example to work. The first is
that we need to expose a port from the chap9 network to the host network so we can
browse the site:

web:

 image: ${DOCKER_REGISTRY-}web

 build:

 context: .

 dockerfile: web/Dockerfile

 ports:

 - 80

 networks:

 - chap9

In the preceding code block, port 80 is exposed from the chap9 network.

Modifying startup
This also means the port we hardcoded in our statup.cs file will be incorrect. Let's
correct this now by changing from using the IP address to using the name of the service
in the new Docker network. This is done in the ConfigureServices method in the
startup.cs file:

public void ConfigureServices(IServiceCollection services)

{

	 services.AddStackExchangeRedisCache(option =>

 option.Configuration = "redis");

}

The other thing we will need to do is seed the Redis cache with a default message. This was
done previously in a manual step, so we will add some logic to do this if the message has
not yet been defined.

For simplicity, this was done in the Configure method by adding the following lines
before the app.UserEndpoints command:

public void Configure(IApplicationBuilder app,
IWebHostEnvironment

 env, IDistributedCache cache)

{

394 Getting Started with Containers

…

if(string.IsNullOrEmpty(cache.GetString("messageFromRedis")))

{

cache.SetString("messageFromRedis", "Hello from Redis

 running in an isolated network!");

}

…

}

The preceding snippet will set the string with the messageFromRedis key only if it is
missing. This is a simple example, but hopefully you can see how simple it is to work with
a Redis cache.

Potential errors
There are a couple of things you might encounter if things don't go well. The first error to
highlight is that if we do not specify a port to expose to the host, we will see the following
dialog as shown in Figure 9.42:

Figure 9.42 – Missing port

This indicates that no ports were specified under the web service in the Docker Compose
file.

The second thing is that if the address of the Redis cache does not match, we will get an
unable to connect error when we try to establish a connection to Redis. Let's illustrate
another feature of Docker Compose by passing in the network location as an environment
variable. This is done by defining the variable in the Docker Compose file in the web
service section.

Running ASP.NET Core in a container 395

Adding environment variables
First, in the startup.cs file, edit the ConfigureServices method to use an
environment variable:

public void ConfigureServices(IServiceCollection services)

{

	 services.AddStackExchangeRedisCache(option =>

 option.Configuration = Environment.

 GetEnvironmentVariable("REDIS_ADDRESS"));

}

Then in the Docker Compose file, edit the web service section to include a new
environment setting:

web:

 image: ${DOCKER_REGISTRY-}web

 build:

 context: .

 dockerfile: web/Dockerfile

 environment:

 - REDIS_ADDRESS=redis

 ports:

 - 80

 networks:

 - chap9

Most likely, you will not encounter an error, but an important feature to highlight in
an orchestration, is dependent on another container. This can be done in the Docker
Compose file by using the depends_on setting:

 web:

…

 depends_on:

 - redis

…

396 Getting Started with Containers

The following shows our completed docker-compose.yml file:

version: "3.4"

services:

 web:

 image: ${DOCKER_REGISTRY-}web

 build:

 context: .

 dockerfile: web/Dockerfile

 depends_on:

 - redis

 environment:

 - REDIS_ADDRESS=redis

 ports:

 - 80

 networks:

 - chap9

 redis:

 image: redis

 networks:

 - chap9

networks:

 chap9:

When running the project, we should see our new updated message as shown in Figure
9.43:

Figure 9.43 – Hello from Redis running in an isolated network!

Running ASP.NET Core in a container 397

Let's take a second to look at this a little deeper so that we have more of an understanding
of what is going on.

Docker networks
Let's take a look at the currently defined networks by using the docker network ls
command as shown in Figure 9.44:

Figure 9.44 – docker network ls

You should see several networks. The two we will look at in more detail have the bridge
driver. Using the docker network inspect bridge command, let's look at the first
network named bridge. For now, look at the Containers section as shown in Figure
9.45:

Figure 9.45 – docker network inspect bridge – Containers

398 Getting Started with Containers

By looking at the names of the containers, we can tell that this is the default network,
as these are the containers that we created in the first sections of this chapter. This is
indicated in the Options section as shown in Figure 9.46:

Figure 9.46 – docker network inspect bridge – Options

Note the default bridge option is set to true. When we inspect the other bridge
network with the docker network inspect network id command, we can see
that the options indicate this is the chap9 compose network as shown in Figure 9.47:

Figure 9.47 – docker network inspect network id

Take a moment to also inspect the containers in the network as shown in Figure 9.48:

Figure 9.48 – docker network inspect chap9 containers

The ASP.NET Core application and Redis cache containers are shown with their internal
addresses.

Summary 399

In this section, we looked at Docker Compose. This allowed us to define a container
orchestration involving two containers: an ASP.NET application and a Redis cache. The
orchestration was defined to illustrate several features of Docker Compose. The first
was the creation of an isolated network for two containers. We also made sure to expose
only port 80 on the ASP.NET application. We included a dependency between ASP.NET
and the Redis cache using the depends_on setting. Additionally, we illustrated how an
environment variable can be set and made available to a running container.

Summary
In this chapter, we have covered containers and the popular Docker platform. We
provided an overview of containerization and what makes containers different from VMs.
We looked at Docker and some of its major components, including images, containers,
Docker Engine, and Dockerfiles.

We provided three different examples of running containers. The first was running the
popular in-memory cache Redis. This showed how simple it is to start up a new container.
Next, we created our own ASP.NET Core container by using just Notepad. The last
example used Visual Studio to containerize an existing ASP.NET Core application. This
example highlighted some of the nice features that the IDE provides when working with
Docker.

Containers and Docker is a big subject. The goal of this chapter is to present some of the
highlights and background of this powerful technology. Because of the portability of .NET
to both Linux and Windows, it is an ideal framework for building containers.

The next chapter will take ASP.NET to the cloud! We will look at how Amazon Web
Services (AWS) and Azure can host our ASP.NET solutions.

Questions
1.	 Would you expect an application to start faster in a container or a VM?

2.	 Is Redis a relational database?

3.	 Can you view running containers in Visual Studio?

4.	 What orchestration type should be used when creating an orchestration involving
multiple Docker Engine instances?

5.	 Was this chapter interesting?

400 Getting Started with Containers

Further reading
•	 Docker has great documentation and can be found at https://docs.docker.

com/.

•	 Microsoft covers Docker and Visual Studio support for containers in their
documentation at https://docs.microsoft.com/en-us/aspnet/core/
host-and-deploy/docker.

•	 Learn Docker – Fundamentals of Docker 19.x, Second Edition by Gabriel N.
Schenker, Packt Publishing,
https://subscription.packtpub.com/book/cloud_and_
networking/9781838827472.

•	 Docker for Developers by Richard Bullington-McGuire, Andrew K. Dennis, Michael
Schwartz, Packt Publishing,

https://subscription.packtpub.com/book/cloud_and_
networking/9781789536058.

https://docs.docker.com/
https://docs.docker.com/
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/docker
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/docker
https://subscription.packtpub.com/book/cloud_and_networking/9781838827472
https://subscription.packtpub.com/book/cloud_and_networking/9781838827472
https://subscription.packtpub.com/book/cloud_and_networking/9781789536058
https://subscription.packtpub.com/book/cloud_and_networking/9781789536058

Section 3 –
Running

Congratulations! You can walk. Now let’s learn how to run! In this section, we will
explore what it means to build a cloud-native application, and we will also cover federated
identity, debugging, unit testing, and integrating with a CI/CD pipeline.

This section includes the following chapters:

•	 Chapter 10, Deploying to AWS and Azure

•	 Chapter 11, Browser and Visual Studio Debugging

•	 Chapter 12, Integrating with CI/CD

•	 Chapter 13, Cloud Native

10
Deploying to AWS

and Azure
In the previous chapter, we looked at containers and the Docker platform. Containers are
a great way to improve productivity by simplifying the development life cycle and helping
to reduce the chances of things going wrong during deployment. We looked at the popular
Docker framework and provided some practical examples.

In this chapter, we will provide some examples of hosting your ASP.NET solution on
two leading cloud providers, Amazon Web Services (AWS) and Azure. Both of these
providers offer a sophisticated network of servers and infrastructure that is distributed
across the globe for hosting your solutions. This is easier than it sounds, as both providers
provide tools, Software Development Kits (SDKs), and extensions to support you.

Our intention is to support those who are not familiar with cloud providers and hosting
services on them. But we hope to not just repeat existing tutorials and documentation.
Because of this, for some steps, we will direct you to documentation written and made
available by the cloud service providers themselves.

404 Deploying to AWS and Azure

We will cover the following topics in this chapter:

•	 Overview of cloud computing

•	 Load balancers and website health

•	 Publishing to AWS using Visual Studio

•	 Publishing to Azure using Visual Studio

For many users new to AWS and Azure, getting started is challenging. The portals have
been designed to help new users and offer supporting documentation and tutorials. We
will highlight some of the ones we feel are especially helpful in the Further reading section
at the end of the chapter.

By the end of the chapter, you will have some familiarity with AWS and Azure. You will
have some practical experience in deploying ASP.NET applications using Visual Studio
extensions. You will also have experience in reviewing deployed applications in the AWS
console and the Azure portal. This chapter introduces cloud providers, and we will look at
developing solutions for the cloud in more detail in Chapter 13, Cloud Native.

Technical requirements
This chapter includes short code snippets to demonstrate the concepts that are explained.
The following software is required to make it work:

•	 Visual Studio 2019: Visual Studio can be downloaded from https://
visualstudio.microsoft.com/vs/community/. The Community edition
is free and will work for the purposes of this book.

•	 .NET 5: The .NET framework can be downloaded from https://dotnet.
microsoft.com/download.

https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

Technical requirements 405

Make sure you download the SDK and not just the runtime. You can verify the installation
by opening a command prompt and running dotnet --info as shown in Figure 10.1:

Figure 10.1 – Verifying the installation of .NET

As part of this chapter, we will use extensions in Visual Studio to work with AWS and
Azure.

Please visit the following link to check the CiA videos: https://bit.ly/3qDiqYY

Working with AWS
An AWS account is required to perform the steps in the Publishing to AWS section. The
steps in the section have been designed to result in small or no charges for a new AWS
account, by using services from the free tier. Charges could be incurred if services other
than those specified are used.

To create a new AWS account, use the Create an AWS Account button on the AWS portal:
https://aws.amazon.com/. Additional information on this process is referenced in
the Further reading section, at the end of the chapter.

We will be using the AWS Toolkit extension, using Manage Extensions in Visual Studio,
as shown in Figure 10.2:

Figure 10.2 – Manage Extensions

https://bit.ly/3qDiqYY
https://aws.amazon.com/

406 Deploying to AWS and Azure

The AWS Toolkit can be found by searching for the phrase AWS Toolkit and can be
seen in Figure 10.3:

Figure 10.3 – AWS Toolkit extension

Additional information about the installation of the AWS Toolkit for Visual Studio can be
found at https://docs.aws.amazon.com/toolkit-for-visual-studio/
latest/user-guide/welcome.html.

Working with Azure
An Azure account is required to perform the steps in the Publishing to Azure section. The
steps in the section have been designed to result in no charges for a new Azure account, by
ensuring that the usage charges are covered by the $200 USD monthly credit. This credit is
applied for all new Azure accounts. Charges may be incurred if services other than those
specified are used.

To create a new Azure account, use the Start free button on the Azure website:
https://azure.microsoft.com/en-us/free/. Additional information on this
process is referenced in the Further reading section at the end of the chapter.

The Azure extension is installed as part of Visual Studio 2019. This can be done using the
Visual Studio Installer by selecting the Modify option as shown in Figure 10.4:

Figure 10.4 – Visual Studio Installer

https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/welcome.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/welcome.html
https://azure.microsoft.com/en-us/free/

Overview of cloud computing 407

The Azure development package should be selected to add Azure support in Visual
Studio as shown in Figure 10.5:

Figure 10.5 – Azure development

By selecting the Azure development package, Azure-related SDKs, tools, and sample
projects are made available.

GitHub source code
The source code for this chapter is in the GitHub repository at https://github.
com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/
Chapter%2010.

Overview of cloud computing
This section provides only a brief overview of cloud computing, as we will cover both
on-premises and cloud computing models in more detail in Chapter 13, Cloud Native. The
purpose of this section is to provide context on cloud computing and some background
on the two selected cloud providers. You may want to read both the Publishing to AWS
and Publishing to Azure sections but only perform the steps for one of the providers.

Cloud computing can be thought of as the delivery of computing infrastructure and
services over the internet. Before cloud computing gained such popularity, organizations
chose to host their services from data centers that they ran themselves. We refer to
these data centers as on-premises, as they typically are hosted on the premises of the
organizations themselves.

In this chapter, we will refer to the required infrastructure and the hosted services as
resources. These resources include a wide range of things, including virtual machines
(VMs), databases, services for artificial intelligence (AI), and services for processing
large amounts of data. The range of resources continues to grow as the market constantly
evolves. These resources are available to the public, but they do require a subscription to
access them.

https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2010
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2010
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2010

408 Deploying to AWS and Azure

Cloud computing models
These resources have been classified into the following broad categories. We are
highlighting them here, as you often hear people refer to groups of resources in this way:

•	 Infrastructure as a Service (IaaS): This category refers to the IT infrastructure
that solutions are built upon. Think of this category as the networking, computing,
and data storage resources you are renting to your applications. An example of IaaS
would be a VM and the disks and networking used by the VM.

•	 Platform as a Service (PaaS): These resources are often an abstraction over IaaS
resources that make it easier to develop and manage applications. These resources
remove the need for organizations to manage and provision the underlying
resources, which allows organizations to build and maintain applications more
easily. An example of such a platform would be a managed database, where the
details of the hosting, for example, the VMs and disks required to run the database,
are handled by the cloud provider.

•	 Software as a Service (SaaS): This category contains products and services that are
built and managed by the cloud provider or a third party. An example of SaaS would
be an email service.

Cloud computing providers
There are many companies that provide cloud computing services, and we will look at the
two leading cloud providers: AWS and Azure. We chose them for several reasons:

•	 They both offer great support for hosting ASP.NET Core solutions.

•	 Both cloud providers offer IaaS resources, including the provisioning of Linux and
Windows VMs, which can be used to host web applications.

•	 They also both provide several PaaS offerings that simplify the hosting of the
ASP.NET Core solutions.

We will be looking at AWS Elastic Beanstalk and Azure App Service later in this chapter.
These PaaS offerings are great examples of where underlying infrastructure details have
been simplified to allow you to focus on building your solutions.

Amazon Web Services
AWS got its start in 2006 when Amazon, one of the largest retail companies, offered IT
infrastructure to be used by organizations. This initial offering has grown into the largest
cloud provider, offering hundreds of different resources from data centers across the
globe. In July 2020, AWS was estimated to have 31% of the cloud computing market share.

Creating a sample ASP.NET Core web application 409

AWS Elastic Beanstalk
In the Publishing to AWS section, we will be looking at AWS Elastic Beanstalk. This PaaS
offering makes it simple to host ASP.NET Core web applications by simplifying the details
of hosting web applications. We chose this offering as it is very commonly used to host
web applications, and the deployment to Elastic Beanstalk is integrated into Visual Studio.

One thing we should explain is the difference between an application and an environment.
Think of an application as a collection of environments. The environments are related, but
they have separate configurations. Think of them as separate versions of the same website.
Each environment has its own URL.

A common scenario would be to have a development environment, where new changes
are tested by the development team, and a production environment that customers use.
The development environment might be configured to use a different database and to only
have one instance running. The production environment might use a different database
and have multiple instances.

Azure
Azure was released in 2010, and like AWS, it has steadily grown to include hundreds of
offerings from data centers around the world. In July 2020, Azure was estimated to have
20% of the cloud computing market share.

Azure App Service
In the Publishing to Azure section, we will be using Azure App Service to host the same
ASP.NET Core web application that we published to AWS. Like AWS Elastic Beanstalk,
this PaaS offering also simplifies the hosting of ASP.NET Core web applications, and the
deployment of Azure App Service is integrated with Visual Studio.

Creating a sample ASP.NET Core web
application
In this chapter, we will use a simple ASP.NET web application to illustrate some features
of AWS and Azure. The sample application has been kept simple, as we want to keep the
focus on deploying to the cloud. We will add a new endpoint that returns the health of the
application. This will be used by the cloud platform, in order to determine whether the
application is healthy.

410 Deploying to AWS and Azure

Our suggestion is that you start with the source code in the GitHub repository, as this
chapter is more about the Visual Studio extensions than the ASP.NET Core application.
We will describe the steps we took to build the sample example, for those who want to
build the application themselves:

1.	 First, we created the sample application by using the dotnet new mvc command
in a folder named Chapter 10 Final. This is shown in Figure 10.6:

Figure 10.6 – dotnet new mvc command

2.	 To make sure the application restored, we used the dotnet run command as
shown Figure 10.7:

Figure 10.7 – dotnet run command

3.	 We then used a browser to verify that the application returned the home page
without an error, as shown in Figure 10.8:

Figure 10.8 – Sample application

Creating a sample ASP.NET Core web application 411

This shows that the basic application has been restored without an issue. Now we will add
the ability to check the health of the application.

Checking health endpoint
Many applications are designed to support a health endpoint. This endpoint is designed
to return a healthy status, when the application instance is functioning as expected.
Remember when we talked about one of the benefits of cloud computing being scalability?
The health endpoint is useful when an application has multiple instances all working
together to handle the requests being sent to a website. With the health endpoint, the
instance of the application can report when it is not in a state where it can handle requests
successfully.

Let's take a scenario where you have a web application, and at times, the number of
messages sent to your application is too great for it to handle. We have two options. We
could increase the size of the resource the web application is running on. This is called
scaling up. We could also add additional resources, known as instances, to handle the
messages. This is called scaling out. In the cloud, adding additional instances of your
application is easy and, in general, is more cost-effective than increasing the size of the
resource.

Let's use Figure 10.9 to discuss this in more detail:

Figure 10.9 – Load balancer with two applications

412 Deploying to AWS and Azure

The preceding figure shows two web applications and a load balancer. In this case, we
have a single environment that is composed of two applications. The load balancer is
used to distribute the requests to the environment between the two applications. At some
point, the number of messages may increase to a point where the two applications cannot
handle them. When this happens, it is possible to increase the number of applications as
illustrated Figure 10.10:

Figure 10.10 – Load balancer with four applications

Now we have four web applications sitting behind the load balancer. Because the load
balancer is distributing the requests across all applications, the environment can handle
the increased number of requests.

Creating a sample ASP.NET Core web application 413

Even after an application is added to an environment, it may take some time for
the application to be ready to receive requests. Maybe the application needs to load
information into memory first or perform some processing before it is ready. Or, at some
point, the application might detect that a required resource is not available. While the
application is not able to successfully process requests, it can let the load balancer know by
returning an unhealthy response. This will let the load balancer know to not send requests
to the application. This is illustrated in Figure 10.11:

Figure 10.11 – Load balancer with an unhealthy application

In the previous figure, App3 is returning an unhealthy response to the load balancer. The
load balancer will then stop sending requests to the application instance.

So, let's now see how is this done.

Response status codes
The convention is to create an endpoint that is often called "health." This should either
indicate that the system is healthy or not healthy. This is done by returning either a
response with a status code of 200 (OK) or a response with a status code of 5xx.

Note
5xx means any status code in the 500-599 range. The convention is to
return 503 (Service Unavailable).

414 Deploying to AWS and Azure

For this to make sense, we need to look at what a message looks like in more detail. To
do this, let's use our browser's developer tools. I will be using Edge, but the experience in
Firefox or Chrome will be similar too. In the browser, press F12 to launch the developer
tools. The developer tools for Edge are shown in Figure 10.12:

Figure 10.12 – Developer tools for Edge

You will see several tabs, and the one we are interested in is called Network. Go ahead and
select this tab.

Note
We will discuss developer tools in more detail in Chapter 11, Debugging and
Unit Testing.

Now that the Network tab is open, refresh the home page of our site. You should see
something like we see in Figure 10.13:

Figure 10.13 – Developer tools Network tab

Creating a sample ASP.NET Core web application 415

Each request to the server is listed and includes information such as the type of request,
size, and the time it took to receive the response. The column we are interested in is
Status. In the preceding figure, you can see that each request has a status of 200. This
means that each response included a status code of 200, indicating that the response was
handled without error.

Now let's try to navigate to an endpoint that does not exist. We can do this by putting /
unknown at the end of the URL. Now look at what the response code looks like in Figure
10.14:

Figure 10.14 – Network log with failed response

The server now responds with a status of 404, which means the page that was requested
was not found. In our sample application, we are going to respond with a status code of
503, which means the application is not healthy.

Adding a health endpoint
In this section, we will modify our application to support a health endpoint. This endpoint
will either return a healthy or unhealthy response. We will do this randomly; most of
the time the response will be healthy but occasionally the endpoint will respond with an
unhealthy response.

In ASP.NET Core, there is the Health Checks Middleware to support this in the
Microsoft.Extensions.Diagnostics.HealthChecks library. Please see the
Further reading section for more information about this middleware.

416 Deploying to AWS and Azure

First, we need to create a class to implement the IHealthCheck interface. We'll just call it
HealthCheck. After you create the class, add : IHealthCheck as shown in Figure 10.15:

Figure 10.15 – IHealthCheck interface

The reason for the red squiggle under IHealthCheck is that Visual Studio does not
know what this interface is. You left Visual Studio by adding a using Health
Checks Middleware statement for Microsoft.Extensions.Diagnostics.
HealthChecks. If you hover over the IHealthCheck, you can select add this as shown in
Figure 10.16:

Figure 10.16 – Diagnostics HealthChecks

IHealthCheck will still have a red squiggle because now that Visual Studio knows about
the interface, it is telling us we need to implement methods that match. Again, you can
add these by selecting Implement interface as shown in Figure 10.17:

Figure 10.17 – Implementing the IHealthCheck interface

Creating a sample ASP.NET Core web application 417

The Implement interface option will generate a method for CheckHealthAsync. We
will replace the throw statement with the following lines of code:

var random = new Random();

var isHealthy = random.Next(10) != 1;
if (isHealthy)
{
 return Task.FromResult(HealthCheckResult.Healthy());
}
else
{
 return Task.FromResult(HealthCheckResult.Unhealthy());
}

The first part of this code snippet uses the Random class to generate a random value
between 0 and 9. On a 1, we set the Boolean isHealthy to false; otherwise, it is set to
true. The second part of the snippet will return either a HealthCheckResult status of
Healthy when IsHealthy is true or a status of unhealthy when it is false.

Note
We are using Task.FromResult() because the interface method is
asynchronous, and so it requires a return type of Task.

Now that we have our HealthCheck implemented, we need to hook up the middleware.
To do this, we will update the Startup class. In the ConfigureServices method of
Status.cs, add the following line:

services.AddHealthChecks().AddCheck<HealthCheck>("web");

This adds our HealthCheck implementation as a check in the HealthChecks
middleware. Figure 10.18 shows the completed ConfigureServices method:

Figure 10.18 – ConfigureServices method

418 Deploying to AWS and Azure

The next step is to add HealthCheck as an endpoint. We will put this check at /health
as this is the convention. To do this, add the following as an endpoint in the Configure
method:

endpoints.MapHealthChecks("health");

Figure 10.19 shows the completed method with our inserted line highlighted:

Figure 10.19 – Configure method

This change simply exposes the health check at /health.

Go ahead and run the solution to see this in action. Once the application has started,
navigate to the health endpoint by adding /health to the URL as shown in Figure 10.20:

Figure 10.20 – Health endpoint

Publishing to AWS 419

Try pressing refresh and you should see the Unhealthy response roughly 1 out of 10
times. Figure 10.21 shows the responses in the developer tools:

Figure 10.21 – Network log with an unhealthy response

Notice that the third response has a status of 503. This indicates an Unhealthy
response.

Note
In the developer tools, use the Preserve log option to keep the previous
responses in the log.

Now that we have our sample application ready, let's publish this to AWS and Azure!

Publishing to AWS
In this section, we will publish our application to AWS Elastic Beanstalk. At this point,
you should have an AWS account created. There are several ways to deploy to AWS Elastic
Beanstalk. One way would be in the AWS console directly. Instead, we will use the AWS
Toolkit as it simplifies the deployment process. To deploy using the AWS Toolkit, we need
to add the required credentials to Visual Studio.

420 Deploying to AWS and Azure

Creating a user for publishing from Visual Studio
In order to get the credentials we need, we will create a user in AWS. This is done in the
AWS console. Go ahead and log in:

1.	 The service we are interested in deals with identity and access. To find this service,
use the Services dropdown and type iam as shown in Figure 10.22:

Figure 10.22 – IAM service

2.	 After selecting this service, select Users under Access management as shown in
Figure 10.23:

Figure 10.23 – Identity and Access Management (IAM)

Publishing to AWS 421

3.	 We want to add a user, so select the Add user button. This will start a wizard.
The first step sets the user's details. We will add a new user with the name
VisualStudioUser. This user will be getting programmatic access as shown here
Figure 10.24:

Figure 10.24 – Add user – step 1

4.	 Next, we want to add some permissions. We'll do this by adding the required
permissions to a group and then adding the user to a group. This is a great way of
configuring combinations of permissions so that they can be given to multiple users
consistently. Select the Create group button as shown in Figure 10.25:

Figure 10.25 – Add user – step 2

422 Deploying to AWS and Azure

5.	 We will now create a group named VisualStudioPublisherGroup, and we
will add two permissions. The first is access to IAM. This can be seen in Figure
10.26:

Figure 10.26 – Create group – IAMFullAccess
The second required permission is access to AWS Elastic Beanstalk as you see in
Figure 10.27:

Figure 10.27 – Create group – AWSElasticBeanstalkFullAccess

Publishing to AWS 423

6.	 After you have these permissions selected, proceed to the next step by pressing the
Create Group button.

Note
The details of AWS permissions are outside the scope of this chapter. In the
Further reading section, we will provide resources related to AWS.

Figure 10.28 shows that the user will be added to the new group:

Figure 10.28 – Add user – review

7.	 For our purposes, we do not need to define any tags, so we can skip the Tags step.
Figure 10.29 shows a summary of the user:

Figure 10.29 – Add user – step 4

424 Deploying to AWS and Azure

8.	 After clicking the Create user button, we are shown a summary of the action as
shown in Figure 10.30:

Figure 10.30 – Add user – step 5

Go ahead and download the credentials by using the Download .csv button. These are the
credentials that we will load into Visual Studio.

Understanding Regions in AWS
At this point, we should highlight regions. Cloud providers divide the world into regions.
These correspond to a collection of geographically close data centers. AWS resources can
either be regional, meaning they are in a specific region, or global. Our user, for example,
is global. The web application we are going to deploy will be regional.

A simple way to tell if a resource is global is to look in the top right of the AWS console.
When IAM is selected, this is shown in Figure 10.31:

Figure 10.31 – AWS global resource

Now, go ahead and find AWS Elastic Beanstalk by using the services dropdown as
shown in Figure 10.32:

Figure 10.32 – AWS Elastic Beanstalk

Publishing to AWS 425

You will now see the Region closest to you has been selected by default. In this example,
the Sydney Region has been selected as you can see in Figure 10.33:

Figure 10.33 – AWS Elastic Beanstalk Regions

We will deploy our application to a Region. You can either choose the default one or
another Region.

426 Deploying to AWS and Azure

Publishing from AWS
In this section, we will publish from Visual Studio to AWS. Let's get started:

1.	 Back in Visual Studio, right-click on the project and select the Publish to AWS
Elastic Beanstalk… option as seen in Figure 10.34:

Figure 10.34 – Publish to AWS Elastic Beanstalk…

2.	 Next, we need to add our credentials. You do this by clicking the image of the
person with a plus symbol. This is indicated in Figure 10.35:

Figure 10.35 – Adding a profile

3.	 This will present you with a dialog where you can specify the profile name as well as
loading the credentials we downloaded Figure 10.36:

Publishing to AWS 427

Figure 10.36 – Visual Studio AWS profile
In the preceding figure, we supplied a name of VisualStudioPublisher and
imported our credentials using the Import from csv file… button. We left the
default of Standard AWS Account and clicked OK.

4.	 Now that we have loaded our credentials, we can specify the Region we want to
deploy to as shown in Figure 10.37:

Figure 10.37 – AWS publish wizard step 1
As this is a new application environment, we can only select Create a new
application environment. Go ahead and click Next.

428 Deploying to AWS and Azure

5.	 In the next step, we specify the name of the application and environment. We also
construct the URL of the website we are creating as shown in Figure 10.38:

Figure 10.38 – AWS publish wizard step 2
In the preceding figure, we named the application Chatper10Final and selected
the development environment. You might find that you need to change the URL
until you find a free name, and you can use the Check availability button to see
whether a URL is free. This URL will be global, so it needs to be unique.

Go ahead and press Next.

6.	 The next page provides some details about the environment. Elastic Beanstalk will
be hosted on an EC2 VM. We don't have to worry about many of the details, but we
do have to consider the type and size Figure 10.39:

Figure 10.39 – AWS EC2 type and size
In the previous figure, we chose a Windows Server Core build as we required the
latest .NET version to be available. Our application will not require a large VM, so
we chose t3a.micro as it is in the AWS Free Tier.

Publishing to AWS 429

Note
Not all AWS Elastic Beanstalk types will support ASP.NET Core 5. To find
out what environments will support the deployment, please use the AWS
Elastic Beanstalk release notes: https://docs.aws.amazon.com/
elasticbeanstalk/latest/relnotes/relnotes.html.

The other required field is the key pair that will allow us access to the environment
after deployment as seen in Figure 10.40:

Figure 10.40 – AWS key pair
In the preceding screenshot, we named our key pair vs_key_pair.

7.	 The next parameter to note is Single instance environment. When clicked, the
application can only have one instance. But when unselected, the application will be
provisioned with a load balancer and will allow more than one instance. It will be
initially provisioned with one instance.

To show how to set the health endpoint, deselect Single instance environment as
shown in Figure 10.41:

Figure 10.41 – Load balancer type

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/relnotes.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/relnotes.html

430 Deploying to AWS and Azure

The default load balancer is what we want. This uses HTTP requests and uses the
response status code to determine the health. Continue to the next page as shown in
Figure 10.42:

Figure 10.42 – AWS publish wizard permissions step
This page allows you to set the application permissions. For our purposes, the
default values are suitable. Continue to the next page as shown in Figure 10.43:

Figure 10.43 – AWS publish wizard options step

Publishing to AWS 431

8.	 There are several options listed, but to keep things simple, we will only make two
changes to the defaults. The first is to set Enable Enhanced Health Reporting. This
is a free service and provides additional information about our running service.
The second is Health check URL. You will only see this if you did not enable Single
instance environment. We will set this to our health check endpoint, /health.

9.	 After clicking Finish, your options are presented for review as shown in Figure
10.44:

Figure 10.44 – Review

432 Deploying to AWS and Azure

10.	 When you click Deploy, the deployment will begin. This will take time, so be
patient.

You can see the status of the deployment in the Output window, as shown in Figure
10.45:

Figure 10.45 – Output
A window showing the AWS application will also be shown in Figure 10.46:

Figure 10.46 – Environment window

This is a great tool to get to know an application. Take a moment to explore some of its
features.

As we have enabled our health endpoint, keep an eye on the environment's health:

Figure 10.47 – Events

Publishing to Azure 433

As you can see in the preceding figure, AWS reports when the health endpoint returns an
unhealthy response, the 503 status code, as a warning.

Next steps with AWS
AWS Elastic Beanstalk is a great PaaS service for hosting your ASP.NET Core applications,
especially when combined with other AWS resources such as databases and storage. We
have provided a very simple example to get you started. The next steps will be to explore
some of the resources that AWS has made available. These can be found in AWS at the
following locations:

•	 Working with .NET: This series of guides is located at https://docs.aws.
amazon.com/elasticbeanstalk/latest/dg/create_deploy_NET.
html. They include references and guidance for working with .NET in AWS Elastic
Beanstalk.

•	 Deploying to Elastic Beanstalk: This series of guides is located at https://
docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-
guide/deployment-beanstalk.html.

We looked at using the deployment wizard, but there are many other ways of deploying
to Elastic Beanstalk. For example in Chapter 12, Integrating with CI/CD, we will look at
deploying solutions directly from GitHub. It is good to explore a technology, in order to
find the way that works best for you and your team.

Next, we will see how Azure App Service does things.

Publishing to Azure
In this section, we will publish our application to Azure App Service. At this point, you
should have an Azure account created. There are several ways to deploy to an Azure web
app, and as with our AWS example, we will use the functionality available in Visual Studio.

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_NET.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_NET.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_NET.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/deployment-beanstalk.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/deployment-beanstalk.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/deployment-beanstalk.html

434 Deploying to AWS and Azure

Using the Publish wizard in Azure
In our solution, we will use the Publish wizard to deploy to Azure App Service.

You start the wizard by right-clicking on the project as indicated in Figure 10.48:

Figure 10.48 – Publish…

This wizard will walk you through a series of steps, and it supports different types of
publishing, including Azure, Docker Container Registry, and IIS. We have broken these
steps down into specifying what will be deployed, and then specifying where you are
deploying to.

Publishing to Azure App Service
We will be publishing to Azure, so choose this option as shown in Figure 10.49:

Publishing to Azure 435

Figure 10.49 – Publishing to Azure

The wizard supports publishing to different types of Azure resources. We will be deploying
to Azure App Service running on Windows. We could also deploy to App Service running
Linux too. We could also deploy the Docker image to Azure Container Registry, with the
option to then run the Docker image in Azure App Service. The option to deploy to an
Azure VM is also supported.

We will deploy to Azure App Service running on Windows, so select the first option on
this page as shown in Figure 10.50:

Figure 10.50 – Azure App Service (Windows)

436 Deploying to AWS and Azure

Now that the wizard knows what we are deploying, we are asked to specify where we will
be deploying to.

Note
Depending on whether the email associated with your Azure account and
the email associated with Visual Studio match, the following pages might be
different. The following screenshots are from when the accounts do not match,
and/or when you require authenticating with Azure.

Creating a new Azure App Service instance
The next series of steps will create a new Azure App Service instance with the Azure
account you created earlier. The first step is to use the Sign In link to authenticate to the
Azure account. Figure 10.51 shows the link under Already have an account? label:

Figure 10.51 – Sign In

After authenticating Visual Studio with your Azure account, you will be shown a list of
your existing resources that match the type of resource you are creating. As this is our first
resource, you will see (No resources found) as shown in Figure 10.52:

Publishing to Azure 437

Figure 10.52 – Resource group view

When you're on the page shown in the preceding figure, select the Create a new Azure
App Service link to define a new resource group with a new hosting plan.

Let's take a moment to define these terms. Resources in Azure are grouped into resource
groups. This allows logically similar resources to be grouped together, as well as providing
a way to manage all the resources in a resource group at the same time. An example of this
would be when you are ready to delete a website, you are able to delete the entire resource
group and all its resources at the same time.

On this page, we will create a new resource group as shown in Figure 10.53:

Figure 10.53 – New resource group name

438 Deploying to AWS and Azure

Note
The names you use do not really matter, but if you want to follow a naming
convention, we recommend using the following guide: https://
docs.microsoft.com/en-us/azure/cloud-adoption-
framework/ready/azure-best-practices/naming-and-
tagging.

The next step is to create a hosting plan. A hosting plan determines the region, as well
as the size of the compute resources used by all instances of the app service. As with
AWS Elastic Beanstalk, choose a region near you. The app service size will determine the
monthly charge and can range from the Free to Premium pricing tiers. Choose the Free
hosting plan if you have it available as shown in Figure 10.54:

Figure 10.54 – Creating a new hosting plan

In the preceding figure, we kept the default name and chose the Sydney data center. We
also chose a size of Standard 1. In your situation, you should have access to the free
size.

With the region and size defined, we are ready to create the hosting plan. Use the Create
button to start the creation of the hosting plan as shown in Figure 10.55:

https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging

Publishing to Azure 439

Figure 10.55 – Creating a new resource group and hosting plan

Once the hosting plan has been created, you will now see your resource group and app
service displayed as shown in Figure 10.56:

Figure 10.56 – App service defined

440 Deploying to AWS and Azure

Go ahead and click Finish to proceed to the next step.

Our publishing profile is now complete. We are now presented with the page as seen in
Figure 10.57:

Figure 10.57 – App ready to publish

This shows us the publishing profile that will be used, including the URL that will be
generated and the resource group. All the defaults are what we want, so go ahead and
press Publish.

In the Output window, you can view the progress of the build and publish as shown in
Figure 10.59:

Figure 10.58 – Output

The other window to note is Web Publish Activity. This will provide more detail about
the publish activity and is shown in Figure 10.59:

Publishing to Azure 441

Figure 10.59 – Web Publish Activity

Once the publish has been completed, your default browser will be launched using the site
URL. Once the website is loaded in the browser, navigate to the health endpoint as shown
in Figure 10.60:

Figure 10.60 – Azure App Service health endpoint

The endpoint shown in the previous figure depicts that our website is healthy. Press the
refresh button several times. You should see a mix of mostly healthy responses, but there
are a few unhealthy responses. This indicates that our health endpoint is working as
expected.

Note
Similar to AWS Elastic Beanstalk, it is not known what the support for
ASP.NET will be when you are working through these examples. You might
have to target an older version of the framework depending on what is
available. This is a handy map that show .NET compatibility with Azure App
Service: https://aspnetcoreon.azurewebsites.NET/#.
NET%20Core%20SDK.

Now that we have our solution deployed, let's see how Azure supports the health
endpoint.

Health check
To see our health endpoint in action, we need to view this in the Azure portal. Like AWS,
Azure realizes that the first time viewing the portal can be daunting. There is a lot of
information to take in. Like AWS, Azure has a feature to help you track down a resource –
search.

https://aspnetcoreon.azurewebsites.NET/#.NET%20Core%20SDK
https://aspnetcoreon.azurewebsites.NET/#.NET%20Core%20SDK

442 Deploying to AWS and Azure

At the top of the page, there is a search bar. The portal will filter all services, resources,
and documentation when you use this feature. We typed in chapter as shown in Figure
10.61:

Figure 10.61 – Azure portal search

This shows how app services and app service plans that match the entered value. Select the
app service you published.

To the left of the selected app service, you will see Menu options. The option we want is in
the Monitoring section and is called Health check (Preview). You can see this in Figure
10.62:

Figure 10.62 – Health check menu

The preceding figure shows this option, and at the time of writing, this feature was in
preview as indicated.

Publishing to Azure 443

When you select the health check option, you are presented with the ability to enable the
feature, and you can define the path to the endpoint as shown in Figure 10.63:

Figure 10.63 – Health check path

The preceding figure shows the health check enabled with our /health path defined.
Also, note the information displayed at the top making it clear what action Azure will take
if the instance is unhealthy. In our case, we are only running a single instance, so Azure
will only alert us when the instance is unhealthy. If we have multiple instances running,
then the unhealthy resource would be removed and a new resource would be brought
online to replace it.

Once the health check has been enabled, navigate to the Metrics option. This is also in the
Monitoring section, as indicated in Figure 10.64:

Figure 10.64 – Metrics

444 Deploying to AWS and Azure

The metric we are interested in is Health check status. Go ahead and add this metric, as
shown in Figure 10.65:

Figure 10.65 – Adding Health check status

Leave the metric running for some time in order to see how the health of the application
looks over time. You should end up with a graph where the application is mostly healthy.
Figure 10.66 is an example of how our metric appeared:

Figure 10.66 – Metrics

Take a moment to explore the other metrics that are available. These are a simple, yet
effective way to monitor your app services.

Summary 445

Azure next steps
Azure App Service is a great PaaS service for hosting your ASP.NET Core applications.
Like AWS Elastic Beanstalk, App Service can be integrated with other services hosted
in Azure, other cloud providers, and even on-premises. We have provided a very simple
example to get you started. The next steps will be to explore some of the resources that
Azure has made available. These can be found in Azure, at the following locations:

•	 Azure Quickstarts: These quickstarts provide different languages and
deployment options for working with Azure App Service: https://docs.
microsoft.com/en-us/azure/app-service/quickstart-
dotnetcore?pivots=platform-linux.

•	 Host and deploy: This collection of deployment articles provides a great resource
for looking at different ways of deploying ASP.NET Core: https://docs.
microsoft.com/en-us/aspnet/core/host-and-deploy/azure-
apps/?view=aspnetcore-3.1&tabs=visual-studio.

Summary
In this chapter, we looked at using AWS and Azure to host our ASP.NET Core
applications. We had a brief introduction to cloud computing, including looking at
how resources are categorized as IaaS, PaaS, and SaaS. Using these classifications helps
when discussing the different products and services offered by AWS and Azure. We
also discussed how load balancers can be used to direct traffic to multiple instances
of a website. We looked at how a website can use a health endpoint to respond to load
balancers about the state of its health.

We then saw two practical examples of deploying a sample ASP.NET Core application to
AWS and Azure. For both examples, we used functionality supported in Visual Studio that
simplifies the deployment process. We encourage you to look over the next steps for both
cloud providers as well as the links in the Further reading section. This will provide more
context around what these cloud providers offer and the different types of deployment.

The next chapter will cover the essential topic of debugging and unit testing. This will
cover looking at some features that ASP.NET Core and Visual Studio have for logging
application activity. We will also highlight some of the most useful features of debugging
in Visual Studio. The chapter will also cover building unit tests, including coverage of
some of the great features provided by Visual Studio.

https://docs.microsoft.com/en-us/azure/app-service/quickstart-dotnetcore?pivots=platform-linux
https://docs.microsoft.com/en-us/azure/app-service/quickstart-dotnetcore?pivots=platform-linux
https://docs.microsoft.com/en-us/azure/app-service/quickstart-dotnetcore?pivots=platform-linux
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-3.1&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-3.1&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-3.1&tabs=visual-studio

446 Deploying to AWS and Azure

Questions
1.	 A virtual network allows you to define paths or routes between devices and other

networks. This resource is an example of what cloud computing model?

2.	 Are health endpoints only available with AWS?

3.	 Is Azure only supported in Visual Studio?

4.	 Which cloud provider is better: AWS or Azure?

Further reading
•	 Information on health checks in ASP.NET Core can be found at https://docs.

microsoft.com/en-us/aspnet/core/host-and-deploy/health-
checks.

•	 Information on creating a new AWS account can be found at https://aws.
amazon.com/premiumsupport/knowledge-center/create-and-
activate-aws-account/.

•	 A module for creating a new Azure account and understanding billing: https://
docs.microsoft.com/en-us/learn/modules/create-an-azure-
account/.

•	 Hands-On Azure for Developers by Kamil Mrzygłód, from Packt Publishing,
available at https://www.packtpub.com/product/hands-on-azure-
for-developers/9781789340624.

•	 Learning AWS – Second Edition by Aurobindo Sarkar and Amit Shah, from Packt
Publishing, available at https://www.packtpub.com/product/learning-
aws-second-edition/9781787281066.

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.microsoft.com/en-us/learn/modules/create-an-azure-account/
https://docs.microsoft.com/en-us/learn/modules/create-an-azure-account/
https://docs.microsoft.com/en-us/learn/modules/create-an-azure-account/
https://www.packtpub.com/product/hands-on-azure-for-developers/9781789340624
https://www.packtpub.com/product/hands-on-azure-for-developers/9781789340624
https://www.packtpub.com/product/learning-aws-second-edition/9781787281066
https://www.packtpub.com/product/learning-aws-second-edition/9781787281066

11
Browser and Visual

Studio Debugging
In the previous chapter, we looked at deploying ASP.NET Core applications to the two
leading cloud providers: AWS and Azure. Both cloud providers have excellent support for
managing the cloud from within Visual Studio. The chapter serves as an introduction to
cloud computing, and we will cover cloud computing in more detail in Chapter 13, Cloud
Native.

In this chapter, we'll look at how both the browser and Visual Studio help us to
understand, as well as support, the development of our ASP.NET Core applications.
Building software is complex and knowing how to use the tooling available, is essential for
producing high-quality code. Fortunately, all leading browsers have built-in support for
analyzing, debugging, and viewing web applications. As Visual Studio is the integrated
development environment (IDE) that we have been using in most of our chapters, we
will explore the capabilities you should be aware of when developing ASP.NET Core
applications. We will be using a Progressive Web Application (PWA) to illustrate the
features built into the browser and Visual Studio.

448 Browser and Visual Studio Debugging

We will cover the following topics in this chapter:

•	 PWAs

•	 Debugging with browser tools

•	 Debugging with Visual Studio

By the end of the chapter, you will have a good understanding of how to effectively use
both a browser and Visual Studio for debugging. By effectively using the tooling available
to us, we gain insights into the code we are creating. This will increases your capabilities at
building and understanding web applications. This chapter is about coding smartly, using
the browser developer tools and Visual Studio support, for debugging and analyzing our
ASP.NET Core applications.

Technical requirements
This chapter includes short code snippets to demonstrate the concepts that are explained.
The following software is required:

•	 Visual Studio 2019: Visual Studio can be downloaded from https://
visualstudio.microsoft.com/vs/community/. The Community edition
is free and will work for the purposes of this book.

•	 .NET 5: The .NET framework can be downloaded from https://dotnet.
microsoft.com/download.

Make sure you download the SDK and not just the runtime. You can verify the installation
by opening Command Prompt and running the dotnet --info command, as shown
in Figure 11.1:

Figure 11.1 – dotnet - -info

The preceding screenshot shows the version at the time of writing this chapter.

https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

Setting up the sample application 449

Please visit the following link to check the CiA videos: https://bit.ly/3qDiqYY

Browser
In this chapter, we will be using Chrome to show how a browser's developer tools can help
debug your ASP.NET Core web application. Edge, Safari, Firefox, and other browsers also
support developer tools in much the same way. You are encouraged to explore developer
tools using, the browser of your choice.

GitHub source
The source code for this chapter is in the GitHub repository at https://github.
com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/
Chapter%2010.

Setting up the sample application
The application for this chapter will be based on the sample application for the Blazor
WebAssembly (WASM). This application was chosen because it provides enough
complexity to be interesting, as well as providing a good basis for a real-world application.
This example ASP.Net Core web application shows us a good example of a Single-Page
Application (SPA). In many ways, the application's behavior is more like a desktop
application than a traditional website.

When we built a PWA in Chapter 6, Exploring Blazor Web Frameworks, that PWA sent
messages to a SignalR Hub, which distributed messages to the server in real time. In
Chapter 6, Exploring Blazor Web Frameworks, we installed the application to show the
application running as a native application while still posting messages to the server.

In this section, we will create a similar SPA, and using the tools available in the browser,
we will explore more what a PWS means. By the end of this section, you should have more
appreciation, of why this technology is exciting.

Creating a progressive web application
We will start by creating a Blazor application using the Blazor WASM template. I prefer
doing this from the command line, but you will get the same results from within Visual
Studio:

dotnet new blazorwasm

https://bit.ly/3qDiqYY
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2010
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2010
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2010

450 Browser and Visual Studio Debugging

Go ahead and run the created application, as shown in the following command:

dotnet run

After the application has started, navigate to the site to see if it displays correctly.

Note
We'll be using Chrome in this chapter, but most of these steps will work equally
well with another browser.

The page we are going to make the focus of this chapter is Counter, as shown in Figure
11.2:

Figure 11.2 – Counter page

The first thing to notice is if you increase the counter by pressing Click me, navigate away
to another page, and then navigate back to the page, the current count is reset back to 0.
This is because the current count is being stored in the page memory. As soon as the page
is refreshed, the value of the current count is reset back to 0.

Let's open the project and navigate to the counter page, as indicated in Figure 11.3:

Setting up the sample application 451

Figure 11.3 – Counter.razor

This page simply uses a variable to maintain a count. On each button click, the count is
incremented. The following is the source:

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click
me</button>

@code {
 private int currentCount = 0;

 private void IncrementCount()
 {
 currentCount++;
 }
}

The important thing to note is the variable, currentCount, is a private member
variable. It is not initialized with a variable and its value is not stored anywhere. This
means when the page is refreshed, it is reset back to 0.

452 Browser and Visual Studio Debugging

Saving the state of an application
When an application is being executed, the content and information of the application
will change. The state of the application is a collection of information that can be used to
describe the application at a point in time. This is important because if we save the state of
the application, then we can restore the application back to a point in time.

The counter is an example where the application is storing the state of the counter per
page refresh. This means the state of the counter only lasts until the next time the page is
loaded.

For a web application, we have several options for storing the state of the application. For
the purposes of this discussion, let's just concentrate on the user state – in other words,
the state pertaining to a single user.

The following table provides a summary of some common ways to store state:

There are more than we just listed, but even with just the options in the table, we have
some choices. In Chapter 7, APIs and Data Access, we looked at storing data in a database.
We also touched on using Redis Cache in Chapter 9, Getting Started with Containers. That
provides us with an example of storing state on the server.

In this chapter, we will look at accessing the browser's session and local storage to
store application state. To explain why this fits well with a PWA, let's spend some time
discussing these modern web applications.

Setting up the sample application 453

Understanding PWAs
PWAs are applications developed using common web technologies and are intended to
work on standards-compliant browsers including Edge, Chrome, Safari, and Firefox.
These applications differ from websites by some key features:

•	 Installable

•	 Work offline

•	 Support for background tasks

•	 Support for push notifications

Note
Early in the development of web applications, it was common to store user state
on the server. These are referred to as stateful. Stateful applications are less
common now, as stateless applications are more scalable and tend to suit web
application scenarios more.

By using the debugger tools, we will be able to get more insight into an ASP.NET Core
Blazor WASM application and see how it supports building a PWA. We looked at the
installable feature in Chapter 6, Exploring Blazor Web Frameworks. In this chapter,
we'll use the debugger tools to get more insight into how PWAs differ from other web
applications. We will also look at how offline testing is supported in the browser. The use
of debugger tools will also provide insights into how to design our PWA applications.

In the Further reading section, we will provide more information about PWAs.

With our sample application, we want to store the state of the counter. In a more
traditional website, we would store the state of the application in a database each time the
counter is increased and retrieve the value when the page is loaded. In our sample PWA,
we will use the browser's ability to store information in session and local storage.

Let's add this in the next section.

Accessing browser session and local storage
The ability to access browser session and local storage is supported in JavaScript. This
access takes the form of a dictionary of strings. You use a key to retrieve a string and place
it into storage. In our case, we will take a C# object and serialize it into JSON and store the
result.

454 Browser and Visual Studio Debugging

storageHandling.js
The following will create a JavaScript file that will be used to access session and local
storage:

1.	 The first step is to add a JavaScript file named storageHandling.js in the
wwwroot folder. Figure 11.4 screenshot shows the location of the file:

Figure 11.4 – storageHandling.js

2.	 We will be creating four functions in this file, and the first function is shown in the
following code block:

function SetLocalStorage(key, value) {
 if (key == null) {
 console.error("SetLocalStorage called without

 supplying a key value.");
 }

 if (localStorage.getItem(key) != null) {
 console.warn("Replacing local storage value with
 key:" + key);
 }

 localStorage.setItem(key, value);
}

Setting up the sample application 455

The SetLocalStorage function will put the given value into local storage using
the supplied key. We added a couple of checks that will write to the console using
two different levels: error and warning. We did this mostly to show how they are
reflected in the browser tools later in the chapter.

3.	 The following code block retrieves the value stored at a given key:

function GetLocalStorage(key) {
 console.debug("GetLocalStorage called for
 key:" + 8key);

 return localStorage.getItem(key);
}

Again, we added a write to the console, but this time we are logging at a debug level.
The reason for this will make more sense later.

4.	 The following code block contains two functions for setting and retrieving a value
from session storage.

function SetSessionStorage(key, value) {
 sessionStorage.setItem(key, value);
}

function GetSessionStorage(key) {
 return sessionStorage.getItem(key);
}

These four methods will provide our Blazor code to access local and session storage.

5.	 For the JavaScript file to be loaded, we will add it to our Index.html file located
in the wwwroot folder:

<body>
 <app>Loading...</app>

 <div id="blazor-error-ui">
 An unhandled error has occurred.
 Reload

 </div>
 <script src="_framework/blazor.webassembly.js"></
script>
 <script src="storageHandling.js"></script>
</body>

456 Browser and Visual Studio Debugging

The previous code block shows the reference to the new storageHandling.js
file in bold.

6.	 Next, we will define the information that we want to store. This is done in a C# file
called UserState.cs and is shown in the following code block:

namespace Chatper11
{
 public class UserState
 {
 public int Counter { get; set; }
 }
}

For our purposes, we will just be storing a single integer for the counter value.

7.	 In order to access session and local storage, we will be creating two classes:
SessionStorageProvider and LocalStorageProvider. These will both
implement IStorageProvider:

using System.Threading.Tasks;

namespace Chapter11
{
 public interface IStorageProvider
 {
 Task Set(string key, string value);
 Task<string> Get(string key);
 }
}

In the previous code block, you can see the interface defines two methods: Set()
and Get(). These will make more sense when we look at the classes that implement
the interface.

8.	 The following code block is the start of the storage provider that will handle session
storage:

using Microsoft.JSInterop;
using System.Threading.Tasks;

namespace Chapter11
{
 public class SessionStorageProvider :
IStorageProvider
 {

Setting up the sample application 457

 private readonly IJSRuntime JSRuntime;

 public SessionStorageProvider(IJSRuntime
 jsRuntime)
 {
 jsRuntime = jsRuntime;
 }

 // Get
 // Set
 }
}

Notice how we are passing in the IJSRuntime dependency? This is available for
Blazor applications and allows us to call JavaScript functions from C#.

9.	 The next code block calls the JavaScript GetSessionStorage function that we
defined in the storageHandling.js file:

public async Task<string> Get(string key)
{
 return await jsRuntime.InvokeAsync<string>

 ("GetSessionStorage", key);
}

10.	 The following code block calls the JavaScript SetSessionStorage function from
the storageHandling.js file:

async Task IStorageProvider.Set(string key, string value)
{
 await JSRuntime.InvokeVoidAsync("SetSessionStorage",
 key,
 value);
}

11.	 The following code block is for a storage provider, for accessing local storage:

using Microsoft.JSInterop;
using System.Threading.Tasks;

namespace Chatper11
{
 public class LocalStorageProvider : IStorageProvider
 {
 private readonly IJSRuntime jsRuntime;

458 Browser and Visual Studio Debugging

 public LocalStorageProvider(IJSRuntime jsRuntime)
 {
 JSRuntime = jsRuntime;
 }

 public async Task<string> Get(string key)
 {
 return await _jsRuntime.InvokeAsync<string>

 ("GetLocalStorage", key);
 }

 async Task IStorageProvider.Set(string key,
 string value)
 {
 await JSRuntime.InvokeVoidAsync(
 "SetLocalStorage", key, value);
 }
 }
}

The preceding LocalStorageProvider is very similar to the
SessionStorageProvider, and it only differs in the JavaScript methods that are
called.

ApplicationStorage.cs
The next class we will define will be used to manage our UserState with either session
or local storage. This provides us with a convenient way of using either type of storage,
without requiring us to duplicate the serialization logic:

1.	 To begin with, let's create the basic structure of our class, as shown in the next code
block:

using Microsoft.Extensions.Logging;
using System.Text.Json;
using System.Threading.Tasks;

namespace Chapter11
{
 public class ApplicationStorage<TStorageProvider>
where
 TStorageProvider : IStorageProvider
 {

Setting up the sample application 459

 readonly IStorageProvider StorageProvider;
 readonly
 ILogger<ApplicationStorage<TStorageProvider>>

 Logger;

 public ApplicationStorage(TStorageProvider

 storageProvider, ILogger<ApplicationStorage

 <TStorageProvider>> logger)
 {
 StorageProvider = storageProvider;
 Logger = logger;
 }

 // GetUserState()
 // SetUserState()

}

The important thing to note is this generic class requires two dependencies. The first
is an instance of a class that implements the IStorageProvider interface. We
have two, so this should not be a problem. The other is an instance of ILogger<>.
We will talk about this more later, but first, let's finish the two methods.

2.	 The first method is GetUserState() and is shown in the following code block:

public async Task<UserState> GetUserState()
{
 var value = await StorageProvider.Get("UserState");

 if (value == null)
 {
 Logger.LogDebug("UserState initialized.");
 return new UserState();
 }

 return JsonSerializer.Deserialize<UserState>(value);
}

460 Browser and Visual Studio Debugging

The GetUserState() method will use the StorageProvider to retrieve the
saved version of UserState. If we do not have any state saved, then this method
will create a new UserState. Take note that we deserialize the value we retrieve
from storage before returning.

3.	 The second method is SetUserState() and is shown in the following code
block:

public async Task SetUserState(UserState value)
{
 await StorageProvider.Set("UserState",

 JsonSerializer.Serialize(value));
}

The SetUserState() method saves the serialized value of the given UserState
to the StorageProvider.

Note
If you are not familiar with serialization, think of this as a way of representing
an object as a string. This is useful for saving an object to storage, as in our
case, or when integrating with other systems.

4.	 The last bit of setup that we need to do is to add our dependencies to ASP.NET Core
dependency injection. This is done in the Program.cs file. Insert the following
lines before the call to RunAsync(), as shown in the following code block:

builder.Services.AddScoped<LocalStorageProvider>();
builder.Services.AddScoped<SessionStorageProvider>();

builder.Services.AddScoped<ApplicationStorage

 <LocalStorageProvider>>();
builder.Services.AddScoped<ApplicationStorage

 <SessionStorageProvider>>();

These statements set up our created classes, so they will be injected at runtime.
There is one additional registration we will make that will add logging. This is slightly
different in Blazor, so we will cover this in the following section.

Setting up the sample application 461

Logging in Blazor
Web Assemblies (WASMs) are compiled assemblies conforming to an open standard
that's supported to run in most browsers. The objective is to provide native application
performance while still running in a browser. This does mean that some features in ASP.
NET Core will require some different handling. We already saw this with requiring the use
of the Microsoft.JSInterop library in our Blazor pages, in order to access JavaScript
functions. Logging also requires different handling.

Fortunately, our friends in the .NET community have created a set of open source projects
to help us. The package we are interested in is called Blazor.Extensions.Logging.
This can be added to the project, using the following package manager command:

Install-Package Blazor.Extensions.Logging -Version 1.1.1

With the package installed, we can add the following code block in the Program.cs file:

builder.Services.AddLogging(builder => builder.
AddBrowserConsole());

This will add a logger for writing to the browser's console. We will see this in action later
in the chapter, when we are looking at Sources in the Using debugging tools in the browser
section.

There is one additional step to get the logging to work. In the Index.html file, we need
to add a reference to a JavaScript file:

<script src="_content/Blazor.Extensions.Logging/

 blazor.extensions.logging.js" defer></script>

This will load the required JavaScript to log to the console.

Note
Additional information on Blazor.Extensions.Logging can
be found in the GitHub repository at https://github.com/
BlazorExtensions/Logging.

Now that we have our dependencies defined, we can modify the Counter page.

https://github.com/BlazorExtensions/Logging
https://github.com/BlazorExtensions/Logging

462 Browser and Visual Studio Debugging

Modifying the Counter page to track the count
In this example, we will be using page, session, and local storage to illustrate the
differences between them. Of course, you would normally just pick the best one for
the scenario, but we felt this made an interesting illustration to really show the
differences well:

1.	 The first thing we will do is inject our dependencies into the page. At the top of the
page, insert the following code block:

@using Microsoft.Extensions.Logging;
@inject ApplicationStorage<LocalStorageProvider>
LocalState
@inject ApplicationStorage<SessionStorageProvider>

 SessionState
@inject ILogger<Counter> Logger

This lets ASP.NET Core know we want instances of the two
ApplicationStorage classes, as well as an instance of the logger.

2.	 Next, remove the existing markup, as shown next:

<p>Current count: @currentCount</p>

3.	 And replace the removed markup with the following:

<table class="table">
 <thead>
 <tr><td></td><td>Count</td></tr>
 </thead>
 <tbody>
 <tr><td>Page </td><td>@currentCount</td></tr>
 <tr><td>Session</td><td>@currentSessionCount</
td></tr>
 <tr><td>Local </td><td>@currentLocalCount</td></
tr>
 </tbody>
</table>

The previous code block creates a table to show our three counters.

4.	 In the code section, add two more private variables to hold our displayed counts,
as shown here:

private int currentCount = 0;
private int currentLocalCount = 0;
private int currentSessionCount = 0;

Setting up the sample application 463

5.	 Let's create a method for retrieving the count from storage:

private async Task<int>
 GetCountFromStorage<T>(ApplicationStorage<T>
provider)
 where T :
IStorageProvider
{
 var state = await provider.GetUserState();
 return state.Counter;
}

The previous code block uses a given ApplicationStorage provider to retrieve
the UserState from storage. The count is then returned.

6.	 Next, we will create a method to save the count, as follows:

private async Task<int>
 IncrementCountInStorage<T>(ApplicationStorage<T>
provider)
 where T :
IStorageProvider
{
 var state = await provider.GetUserState();
 state.Counter++;
 await provider.SetUserState(state);
 return state.Counter;
}

The previous code block will retrieve the UserState from the given provider. The
count will then be incremented on the UserState, saved back to the provider, and
then the updated count will be returned.

7.	 The next step is to retrieve the current values of the count when the page first loads,
as shown in the following code snippet:

protected override async Task OnInitializedAsync()
{
 currentLocalCount = await
GetCountFromStorage(LocalState);
 currentSessionCount = await
GetCountFromStorage(SessionState);
}

464 Browser and Visual Studio Debugging

The previous code block launches when the page is initializing. It will retrieve the
latest counts from the local storage and session storage. The retrieved values are
then saved to the page's member variables.

8.	 The last step is to update what happens when the button is pressed. Replace the
current IncrementCount() method with the following:

private async void IncrementCount()
{
 currentCount++;

 currentSessionCount = await IncrementCountInStorage

 (SessionState);
 currentLocalCount = await IncrementCountInStorage

 (LocalState);

 StateHasChanged();
}

This method updates the page, session, and local storage counts, using the methods
we created earlier. The last step is to alert Blazor that the state of the page has
changed. This is important, as if this is not done, the page will always show the
previous count and not the latest count.

With all the changes in place, go ahead and start the website. After navigating to the site
and pressing the button a couple of times, you should see something like Figure 11.5
depicts:

Figure 11.5 – Counter page after 7 clicks on Click me

Setting up the sample application 465

The previous image shows the counters in sync. Great! Now let's see what happens when
the page is refreshed. You will see something similar to Figure 11.6:

Figure 11.6 – Counter page after refresh

This is interesting, because it shows the page count resetting, as we expected from the
original behavior. But now the counts stored in session and local storage are not lost.

Let's see what happens when we open a new tab and navigate to the Counter page You
will see something similar to Figure 11.7:

Figure 11.7 – Counter page new session

This shows us that each tab will have its own session, but local storage is persisted between
sessions. Go ahead and close the browser and start it again. After navigating to the
Counter page again, you will see local storage is still shown.

466 Browser and Visual Studio Debugging

This little exercise gives us a good understanding of these three types of storage: page,
session, and local storage. With this knowledge, we can more effectively plan how we
want to store information in the browser. Page-level storage makes sense for forms and
information that we don't want to retain between page refreshes. Session storage should
be used for information that we don't want to share with other sessions. The information
collected in a multiple-page wizard might be a good candidate. And local storage would
be good for information that we want to share with all instances of the browser on the
individual's machine.

Oh, and what about between different browsers? See Figure 11.8

Figure 11.8 – Counter page new browser

The previous screenshot is the same website open on Edge and Chrome. You can see that
the local storage is not shared between the browsers.

Now that we have a working application with some interesting components, let's look at
how the debugging tools in the browser can help us gain more of an understanding of our
applications, and help us to write better applications.

Using debugging tools in the browser
We will use the application we wrote in the last section to explore major features of the
browser's debugging tools. Fortunately, the major browsers have all taken a very similar
approach to this, so a lot of what we will cover will be applicable to Edge, Chrome, Safari,
and Firefox. For example, on a Windows machine, pressing F12 will access the browser
tools in each browser.

Using debugging tools in the browser 467

Let's look at the tabs shown in the browser tools. We are going to have a look at Elements,
Console, Sources, Network, and Application, as indicated in Figure 11.9:

Figure 11.9 – Developer tools tabs

In the following sections, we will look at the tabs indicated in more detail. For additional
information, including information on the tabs we are not covering, please see the Further
reading section at the end of the chapter.

The Elements tab
The Elements tab provides insights into the document object model (DOM) including
CSS. This allows us to get an insight into the markup of the page and how it is presented.
On the Counter page, let's have a look at this in more detail. See Figure 11.10:

Figure 11.10 – Elements tab

468 Browser and Visual Studio Debugging

In the previous screenshot, we are shown the DOM that makes up our counter page.
This allows us to see what CSS and JavaScript files have been referenced. Notice our
storageHandling.js and blazor.extensions.logging.js files are
referenced. Take a moment to drill into the <app> node to see the DOM making up
our table. Refer to Figure 11.11:

Figure 11.11 – Elements tab CSS

In the previous screenshot, notice how we have drilled into the DOM to the <table>
element. With the element selected, we are shown the styles being applied. In the
screenshot, we can see the <table> element has the class .table being applied. Take a
moment to explore the Elements tab.

A nice feature is Inspect. Go ahead and right-click on the Click me button and select
Inspect, as shown in Figure 11.12:

Figure 11.12 – Inspect element

Using debugging tools in the browser 469

This will navigate you immediately to the button in the DOM. Now, in the Styles panel,
change the background color of the button, as shown in Figure 11.13:

Figure 11.13 – Altering button color

This is a great way to quickly see how changes to CSS will affect your pages. Take a
moment to explore this feature. Don't worry about breaking anything, as you can always
refresh the page to remove any of your changes.

Before we move to the Console section, look at this handy feature, as indicated in Figure
11.14:

Figure 11.14 – Mobile view

470 Browser and Visual Studio Debugging

This provides us with the ability to quickly check the responsiveness of our page. For
example, this is providing us a view of how the Counter page looks on a mobile device
when it is rotated. See Figure 11.15:

Figure 11.15 – Counter as viewed in mobile

After you have done some exploring, let's move on to the Console tab.

The Console tab
The Console tab provides access to logged messages, as well as the ability to run JavaScript
commands. After selecting the tab, go ahead and refresh the page. You should then see
something like Figure 11.16 depicts:

Figure 11.16 – Console

The first three messages are about Blazor and the loading of the WASM. This gives us
some insight immediately into the technology of WASM. Go ahead and drill into the
second line, as shown in Figure 11.17:

Using debugging tools in the browser 471

Figure 11.17 – Blazor messages in the Console tab

This shows us that the logic of our application, as well as the references, are being sent to
the browser as libraries.

Take a moment to run the following two JavaScript commands:

localStorage.
setItem("Cats",'{"Bengal":4,"Siamese":2,"Calico":3}')
localStorage.setItem("Languages",'{"Java":2,"TSQL":3,"C#":5}')

The commands illustrate how we have access to JavaScript functions. In this example, we
are adding two additional keys to localStorage. This will also help make the Sources
section more interesting.

Go ahead and change the logging level to Verbose, as shown in Figure 11.18, by using the
All levels dropdown in the menu:

Figure 11. 18 – Logging levels

By adjusting the logging level to Verbose, we will be sure to see all the log messages. We
can reduce the number of visible messages by deselecting levels that we are not interested
in viewing.

472 Browser and Visual Studio Debugging

After increasing the count by clicking the Click me button, you will see some log
messages, as shown in Figure 11.19:

Figure 11. 19 – storageHandling.js link

These are related to the JavaScript messages we wrote in the storageHandling.cs file.
Go ahead and click on the link to the JavaScript, as shown in the previous screenshot.

This will take you to our next section to discuss, Sources.

The Sources tab
The Sources tab will provide us with insight into the different files that make up our page.
As we navigate from the Console tab, you should see something similar to Figure 11.20:

Figure 11.20 – storageHandling.js on the Sources tab

Using debugging tools in the browser 473

Go ahead and put a breakpoint by clicking on row number 7. After using the Click me
button again, the browser will pause in the debugger on line 7, as shown in Figure 11.21:

Figure 11. 21 – Console breakpoint

This will provide us with insight into what is happening. First, we can see the values that
have been sent into the method for key and for value. Notice how the value is a JSON
string holding the current count value.

Another feature to highlight is being able to view the state of variables by hovering over
them. See Figure 11.22:

Figure 11.22 – Debugging hover over

In the preceding screenshot, we are able to see that localStorage has three keys and
also their values. This shows the current UserState having a value of 17 for Counter.
We can also see the two entries we added to local storage by running commands in the
Console tab.

Let's move onto the Network tab.

474 Browser and Visual Studio Debugging

The Network tab
The Network tab provides you with a way to monitor and influence network activity.
We looked at the Network tab previously, in Chapter 10, Taking ASP.NET to the Cloud.
In that chapter, we saw how we could review the messages being sent, including viewing
the status code. In this section, we will point out another useful feature that allows you to
control the network connection.

In the menu bar, find the dropdown that says Online and click on it. This is shown in
Figure 11.23:

Figure 11.23 – Network

This allows you to affect the network, from slowing it down to disabling it altogether. Go
ahead and set the network to Offline. After doing so, navigate the website to different
pages. You should not see any change in its behavior. This is because the application has
been loaded into the browser and is now running without any connection to the server.
As an exercise, go ahead and try this with another project from a previous chapter, for
example, Chapter 7, APIs and Data Access.

From the Chapter 7, APIs and Data Access, project, we have the WeatherForecast endpoint,
as shown in Figure 11.24:

Figure 11.24 – WeatherForecast endpoint

The endpoint simply returns a JSON result containing weather information. When we
disable the network, you can see the response is no longer returned from the server as
shown in Figure 11.25:

Using debugging tools in the browser 475

Figure 11.25 – No internet

The preceding example is extreme, as we are testing with the network available and
without the network available. It is also possible to test when the network is slow or fast.
This allows us to see how our application behaves in different circumstances.

When you are ready, go ahead and set the network back to Online, as we don't want this
to interfere with steps in later sections.

Let's proceed to the last tab that we will cover in this section, Application.

The Application tab
The Application tab allows you to inspect and manipulate the resources that have been
loaded for the web application. In this section, we will look at how we can view and
update local and session storage.

476 Browser and Visual Studio Debugging

To view the local storage, expand the Local Storage section, as shown in Figure 11.26:

Figure 11.26 – Local Storage

This will provide us with a view of the entries in local storage, as well as a way to add new
entries. Go ahead and double-click the next empty row, as shown in Figure 11.27:

Figure 11.27 – Editing Local Storage

This will allow you to enter new values into local storage. You are also able to do the same
with session storage.

Next, select Clear storage, as shown in Figure 11.28:

Debugging in Visual Studio 477

Figure 11.28 – Application storage

The Clear storage section provides us with a summary of the storage the current
application is using. We can also clear the storage, with control over what aspects of
the storage we should clear. If you want to clear the application from storage, including
resetting the counts, go ahead and click Clear site data.

When you are ready, let's go back to Visual Studio and view some of its features for
debugging.

Debugging in Visual Studio
As we have seen with browser developer tools, the capabilities of Visual Studio for
debugging cannot be covered in a single chapter. Our objective will be to highlight some
of the features so you have a good understanding of the fundamentals.

478 Browser and Visual Studio Debugging

Controlling the application launch and target
The first thing in Visual Studio we will look at is controlling how the application is
launched. Below the menu, there is a toolbar that shows the launch settings. Figure 11.29
shows this menu bar expanded:

Figure 11.29 – Launch settings

This allows us to control how the application is launched, and in the preceding screenshot,
we have two options: IIS Express and Chapter11. These values tie into the launch settings,
and the file controlling these options is in the Properties folder as shown in Figure 11.30:

Figure 11.30 – Launch Settings JSON

Debugging in Visual Studio 479

In the launchSettings.json file, we can see two entries in the profiles section
that correspond to the two launch options. Our preference is to not launch in IIS Express,
but instead run the dotnet project directly. To limit the option to just the project, we will
remove the IIS settings and the IIS Express profile as shown in the following code snippet:

{
 "profiles": {
 "Chapter11": {
 "commandName": "Project",
 "launchBrowser": true,
 "inspectUri": "{wsProtocol}://{url.hostname}:{url.port}

 /_framework/debug/ws-
 proxy?browser={browserInspectUri}",
 "applicationUrl":"https://localhost:5001;

 http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

In the JSON discussed before, we limited the launch options to just our project. This will
alter our launch window to just our project as shown in Figure 11.31:

Figure 11.31 – Launch settings revised

480 Browser and Visual Studio Debugging

Another common feature to use is to change the browser used during debugging. Visual
Studio will provide a list of the browsers installed. See Figure 11.32:

Figure 11.32 – Setting the web browser

In the preceding screenshot, we selected Google Chrome to be launched. Now when we
start the project by either clicking the Debug button or pressing F5, we should see both a
console window starting as well as Chrome. See Figure 11.33:

Figure 11.33 – Console and web browser starting

In the previous screenshot, we can see the console running our project, as well as our
application running in Chrome. We like the view of the logging messages in the console
and we will cover this in the next section.

Logging activity
In this section, we will look at setting the logging level of your application. An important
thing to note is all the libraries involved in your project are emitting messages but
only a few of them are being displayed. For this to make sense, go ahead and create an
appsettings.json file for your project as shown in Figure 11.34:

Debugging in Visual Studio 481

Figure 11.34 – appSettings.json file

In the file, first set it to the following JSON:

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug"
 }
 }
}

After creating the appsettings.json file and setting the contents, go ahead and
launch the project. You should now see a large amount of logging in the console. There is
a lot of useful information here, especially when things are not quite working as expected.
In most cases though, it is too much information, so we want to filter out some of the
messages.

482 Browser and Visual Studio Debugging

To do this, modify the existing JSON to the following code:

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug",
 "Microsoft": "Warning",
 "Microsoft.AspNetCore.Hosting.Lifetime": "Information"
 }
 }
}

The preceding JSON is setting the default log level to Debug. This is the lowest level of
logging, which means show us all log messages. The next line is applied on top of this. This
line says we only want to see warning messages from Microsoft libraries. The final line
says the for the messages relating to hosting, we want to see Information messages or
more severe.

Figure 11.35 shows the levels of severity:

Figure 11.35 – Logging levels

In the preceding diagram, the increasing log level indicates that only messages at and
below a specific level will be shown. For example, if the log level was set to Error, then
only messages with a level of Error or Critical would be shown. None indicates that no
messages will be shown.

This is particularly useful when diagnosing issues that are not directly tied to your code.
In the next section, we will look at debugging issues in your code.

Debugging in Visual Studio 483

Setting a breakpoint
In this section, we will look at debugging in Visual Studio. The debugging experience with
the Blazor WASM application is a little bit different than other projects as we are dealing
with client code that has been compiled. In other words, this is code that is running in the
browser, but it is not JavaScript. As we saw earlier in the chapter, the browser developer
tools do have a powerful debugger for JavaScript, but this debugger will not allow us to
debug compiled assemblies. To do this, we need Visual Studio.

Let's start by adding two breakpoints. A breakpoint is just a spot in our code where
we want Visual Studio to stop the execution, or break, so that we can inspect what is
happening. In this example, we will be adding a breakpoint in a C# class as well as a
JavaScript function to show the versatility of Visual Studio.

First, in the ApplicationStorage file, set a breakpoint in the GetUserState()
method by clicking to the right of the line number as shown in Figure 11.36:

Figure 11.36 – GetUserState() breakpoint

Next, in the storageHandling.js file, place a breakpoint in the
SetLocalStorage() method as shown in Figure 11.37:

Figure 11.37 – SetLocalStorage() breakpoint

484 Browser and Visual Studio Debugging

This breakpoint will stop the execution when we are replacing the value in local storage.

To see these in action, start the application by pressing the F5 key and then navigate to
the Counter page. The execution should pause, and you should be directed back to Visual
Studio. See Figure 11.38:

Figure 11.38 – Triggered breakpoint

The first question is are we dealing with local storage or session storage? It is not obvious
as we are dealing with a generic class. The good news is this can be found in the Locals
debug window. Most likely, this will be located at the bottom of Visual Studio, but if not,
you can add the window under the Debug menu as shown in Figure 11.39:

Figure 11.39 – Locals window

Debugging in Visual Studio 485

Looking at our Locals window, we can see we are dealing with the
SessionStorageProvider:

Figure 11.40 – Locals window view

Go ahead and press F5 to continue. Then increase the count. The same breakpoint will
trigger again but go and skip ahead by pressing F5. You should then stop in the JavaScript
file as shown in Figure 11.41:

Figure 11.41 – JavaScript triggered breakpoint

Like the previous breakpoint, the Locals window provides us with details about the state
of the current variables. This is shown in Figure 11.42:

Figure 11.42 – Locals window values

486 Browser and Visual Studio Debugging

The Visual Studio debugger does show the values, but you can also change the values. For
example, if I want to change the count, I can double-click the value and edit it, as you can
see in Figure 11.43:

Figure 11.43 – Editing a local variable

In the preceding screenshot, I am editing the value to 200. Once the value is saved,
continue processing by pressing F5.

Go ahead and delete the breakpoints you have set. An easy way to do this is by using the
command in the Debug menu:

Figure 11. 44 – Delete All Breakpoints

Debugging in Visual Studio 487

As it says, this command will delete all the breakpoints in the project. You can also disable
all breakpoints. This is handy if you want to just temporarily stop breaking, but you also
want to retain the breakpoints in case you want to enable them later.

In the next section, we will look at adding conditions to our breakpoints.

Using conditional breakpoints
As we said earlier, there are so many features of debugging, that we are not able to cover
them all in a chapter, but we will cover one more: conditional breakpoints. This feature is
very useful, as you often only want to break when a certain condition happens.

Let's say we only want to break when the value of our count reaches 10. We can do this
by setting a condition on our breakpoint. In the SetUserState() method of the
ApplicationStorage class, set a breakpoint. Then right-click on the breakpoint and
select the Conditions… option, as shown in Figure 11.45:

Figure 11.45 – Conditions

The condition could be when a value changes or when a condition becomes true. In Figure
11.45, we are setting the condition to 10:

Figure 11.46 – Condition logic

488 Browser and Visual Studio Debugging

Now when we start debugging, the breakpoint will only be hit when the value of the
counter becomes 10. In Figure 11.47, we have stopped, and we have expanded the value of
the UserState value:

Figure 11.47 – Conditionally triggered breakpoint

This is just a taste of what Visual Studio can do to help you debug your ASP.NET Core
applications. We will include some links for further reading.

Summary
In this chapter, we covered different tooling that will help in developing ASP.NET Core
applications. We looked at common functionality supported in all major browsers. This
included viewing log messages, debugging code, reviewing the network, and looking at
the files and storage of our application.

We also looked at what support Visual Studio has for debugging and running ASP.NET
Core applications. We looked at adjusting the logging level of our application. We also
used breakpoints to stop the execution for us to view and update variables.

The next chapter will cover automating our deployments using GitHub Actions. This will
provide us with a better way of getting our ASP.NET Core projects delivered in a more
efficient and consistent way than manually deploying them.

Questions
1.	 Are PWAs run in the browser or on a server?

2.	 In a system that maintains stock levels for a company, if I wanted to save the details
of a product so that others can view them, should I use session storage, local
storage, or a database?

3.	 Is Chrome the only browser that supports developer tools?

4.	 Can Visual Studio debug JavaScript?

Further reading 489

Further reading
•	 Information about PWAs by Mozilla Developer Network: https://developer.

mozilla.org/en-US/docs/Web/Progressive_web_apps

•	 Information about PWAs by Google Developers: https://developers.
google.com/web/ilt/pwa

•	 Information about PWAs by Microsoft Docs: https://docs.microsoft.com/
en-us/microsoft-edge/progressive-web-apps-chromium/

•	 Progressive Web Application Development by Example by Chris Love, from Packt
Publishing, available at https://subscription.packtpub.com/book/
application_development/9781787125421

•	 Information about JavaScript interoperability by Microsoft Docs: https://docs.
microsoft.com/en-us/aspnet/core/blazor/call-javascript-
from-dotnet

•	 Information about Chrome DevTools: https://developers.google.com/
web/tools/chrome-devtools

•	 Information about Edge Developer Tools: https://docs.microsoft.com/
en-us/microsoft-edge/devtools-guide

•	 Visual Studio Debugging tour at Microsoft Docs: https://docs.microsoft.
com/en-us/visualstudio/debugger/debugger-feature-
tour?view=vs-2019

•	 Visual Studio Debugging documentation: https://docs.microsoft.com/
en-us/visualstudio/debugger/?view=vs-2019

https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developers.google.com/web/ilt/pwa
https://developers.google.com/web/ilt/pwa
https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps-chromium/
https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps-chromium/
https://subscription.packtpub.com/book/application_development/9781787125421
https://subscription.packtpub.com/book/application_development/9781787125421
https://docs.microsoft.com/en-us/aspnet/core/blazor/call-javascript-from-dotnet
https://docs.microsoft.com/en-us/aspnet/core/blazor/call-javascript-from-dotnet
https://docs.microsoft.com/en-us/aspnet/core/blazor/call-javascript-from-dotnet
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide
https://docs.microsoft.com/en-us/visualstudio/debugger/debugger-feature-tour?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/debugger/debugger-feature-tour?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/debugger/debugger-feature-tour?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/debugger/?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/debugger/?view=vs-2019

12
Integrating
with CI/CD

In the previous chapter, we looked at how both the browser and Visual Studio assist us
in developing our ASP.NET Core applications. As we saw, great tools and IDEs help us to
build high-quality software.

In this chapter, we will look at how best practices in software development also contribute
to building better software. Our example of best practices will be continuous integration
(CI) and continuous delivery (CD).

We will cover the following topics in this chapter:

•	 An overview of CI/CD

•	 An overview of GitHub

•	 CI/CD using GitHub Actions

By the end of the chapter, you will have a good understanding of how CI/CD fits into
the software delivery lifecycle (SDLC). You will learn the benefits of CI/CD, as well
as what challenges are addressed by applying CI/CD. You will understand how GitHub
provides support for building CI/CD workflows. You will also have a practical example of
deploying an ASP.NET Core project using CI/CD.

492 Integrating with CI/CD

Technical requirements
In this chapter, we will only use GitHub to complete the practical example of deploying an
ASP.NET Core project, using GitHub Actions. This means you will only need a modern
browser, such as Chrome, Edge, Firefox, or Safari, and a GitHub account. GitHub offers a
free account that is suitable for all steps covered in this chapter.

You will need a GitHub account to complete the steps. The page https://github.
com/join can be used to create an account.

GitHub source
The source code for this chapter is in the GitHub repository at https://github.
com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/
Chapter%2012.

Please visit the following link to check the CiA videos: https://bit.ly/3qDiqYY

An overview of CI/CD
CI and CD are modern approaches to software delivery, where automation is used to
improve quality and reduce delay. In this section, we will define CI/CD and explore the
issues addressed by this best practice.

First, let’s provide some background.

Understanding why CI/CD
In order to appreciate CI/CD, let’s describe a typical development process Figure 12.1
shows the development process:

Figure 12.1 – Development process

In the previous diagram, we are showing how we might have a team of developers all
developing software on their own devices. The developer changes are then promoted to a
systems integration (SIT) environment for initial testing. Once these have been verified,
the changes then progress to a user acceptance testing (UAT) environment. Again, after a
round of testing, these changes are progressed into production (PROD) with a reasonable
amount of confidence.

https://github.com/join
https://github.com/join
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2012
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2012
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2012
https://bit.ly/3qDiqYY

An overview of CI/CD 493

At some point, the team wants its latest changes to be deployed to the SIT environment.
It might be the responsibility of one of the developers to get the latest changes on to their
development machine and build and produce a package for the SIT environment. One
issue with this is as the changes are being made on different development machines, there
is the potential for one change to impact another change. This might not be discovered
until the build for SIT is created.

Another issue with this approach is because the build is being performed on a
development machine, required build dependencies might not be discovered until a build
is performed on another machine. Imagine a scenario where the developer who usually
performs the builds is having a well-deserved break. Of course, instructions were left on
how to perform the build and create a package of the latest changes, but a dependency was
missed. It could be a costly exercise to find the missing dependency.

These issues are addressed with CI.

Continuous integration
CI increases the confidence we have in the code we are producing by using automation.
The steps for the building of a package varies, but the following are the key points
about CI:

•	 The source is maintained in a version-controlled repository.

•	 The source is built in a known environment.

•	 The building of the source is automated.

By having the source in a version-controlled repository, like GitHub, for example, we
have confidence that only what we want to have changed has changed. This ensures our
development team all merge to the same location, and we can review the merges to make
sure they are complete and accurate.

By building the source in a known environment, we ensure that all required dependencies
are available. In most situations, a known environment would be a dedicated build
machine or VM. In the Building CI/CD using GitHub Actions section, we will be using
Linux VMs that have been provided by GitHub. This means we have a consistent platform
to use for our build, and if there are any required dependencies, we are responsible for
ensuring they are made available. For example, we require .NET 5.0 to be available to
build our sample application, and this will be added to the Linux VM as a separate step.

The building of the source will be automated. This both improves efficiency and reliability.
It is more efficient for an automated series of steps to be run as it frees individuals up so
they can concentrate on other activities. This is more reliable as we remove the possibility
of a human forgetting to perform a step.

494 Integrating with CI/CD

Note
A common step in CI is to run unit tests. Unit tests are tests designed to verify
functionality. These tests can be manually run, or they can be run as part of the
build process.

By automating the build process and performing the packaging of the solution in a known
environment, we have been able to increase efficiency and improve our confidence in the
changes our development team is making. As we know from studies of the SDLC, the
sooner an issue is detected, the less costly it is to fix. By identifying any build failures or
breaks in functionality before the change has been deployed, we have greatly reduced the
cost of fixing these issues. Before CI, broken builds might have only be detected before
a release was required, so it might have been days since the original change was made.
In the Creating a CI/CD workflow section, we will set our CI to be performed with each
check-in to the repository.

Next, we will look at how CD can be used to improve the delivery process.

Continuous delivery
Now, imagine if each environment was made up of several servers. As an example, let’s
take a load-balanced example, as shown in Figure 12.2:

Figure 12.2 – Load-balanced application

An overview of CI/CD 495

It is possible that each environment has a different number of servers. For example, SIT
might only require two servers, while PROD, being more heavily used, might require 10
or more servers. The important point here is that different environments might vary, and
for a single release, multiple servers may need to be updated.

Additionally, each release of the software might require multiple steps. For example,
imagine we are releasing an ASP.NET Core application. For each release, we may need to
remove the previous version, add the new version of the application, and then perform
some custom configuration. The details are not important. What is important is that we
have a series of steps that must be followed accurately, otherwise the released software
might not run correctly. Before automation, the process would have been done manually.
Manual steps introduce the potential for mistakes and missed steps.

Like CI, CD uses automation to greatly improve the efficiency and confidence of the
delivery process. As each environment might require multiple servers to be updated, and
for each server, multiple steps, avoiding a manual process makes sense to save time as well
as to reduce the chance of mistakes when a step is not followed correctly or is missed.

Note
Continuous deployment refers to when every change progresses all the way
into the final environment, after passing all required checks. In short, the
entire process is automated, and only the changes failing an automated test are
prevented from being released.

In short, CI/CD uses automation to greatly improve the SDLC by making the release
of new software changes more efficient and more predictable. Through the addition of
automated tests, we can improve the confidence that changes are not incorrectly altering
the behavior in unexpected ways. By detecting issues as early as possible, we greatly
reduce the cost of fixing them. Automation helps our teams to work more effectively as
they are not performing the build and deployment steps manually. And automation helps
reduce the mistakes that arise from manual tasks due to human error.

Now that we have a good understanding of CI/CD, let’s look at what support GitHub has
for CI/CD in the next section.

496 Integrating with CI/CD

Introducing GitHub
In this section, we’ll look at GitHub and its support for CI/CD. GitHub is a provider of
hosted tools enabling many capabilities required for software development. The backbone
of GitHub is Git, a reliable source code version control system. But GitHub is more than
just Git and offers online utilities that meet many requirements of distributed software
development.

Note
Azure DevOps is another Microsoft service for building CI/CD. In many
ways, the experience of building CI/CD is the same, and we encourage you to
take the time to investigate Azure DevOps, as it may provide a better CI/CD
platform for your requirements. We will discuss Azure DevOps in Chapter 13,
Cloud Native.

In the next section, we will look at the different plans supported by GitHub.

Is GitHub free?
Yes, the base services provided are free. For many community projects and/or projects
involving smaller teams, the free subscription works well. Let’s briefly look at how the
different plans compare, as shown in the following table.

Note that there is also a GitHub One plan, which provides everything in the Enterprise
plan while adding more features for larger enterprises, such as 24/7 support, more metrics,
and access to Learning Lab courses.

Introducing GitHub 497

The great thing is you can join under a free subscription, and when your situation changes
so that you require more storage or actions per month, you can upgrade your plan to the
appropriate plan.

In the next sections, we will review some of the features of GitHub before we proceed to
our CI/CD example.

Some Git terminology
As we have been using GitHub in the previous chapters, we assume some familiarity with
Git. So far, it could have been possible to complete all chapters without creating your own
fork of the code. A fork is a copy of a repository, often called a repo for short, that will
sit in your account. This means you can do anything you want with it, including making
changes. You might find an issue when upgrading some packages to later versions, for
example. This would then allow you to fix the change, verify it worked, and post the
changes back to the original repo, called a master.

There are several other terms you should be familiar with for this chapter, so we’ve listed
them in the following table:

The preceding table simplifies the terms to a degree, but it is enough for us to provide our
example for CI/CD. We’ll include some references in the Further reading section at the end
of the chapter.

In the next section, we will perform a fork of the Packt library.

498 Integrating with CI/CD

Making a copy of the repo
If you have not already created a fork, you do this by using the Fork button on the Packt
source page at https://github.com/PacktPublishing/ASP.NET-Core-5-
for-Beginners as shown in Figure 12.3:

Figure 12.3 – Fork

This will create your own copy in your GitHub account. From here, we will be able to
complete setting up CI/CD in the CI/CD using GitHub Actions.

Before we do, let’s cover some of the other features of GitHub besides providing Git.

GitHub support for CI/CD
GitHub Actions is available with all free subscriptions and provides support for
automating the build and deployment of applications. These don’t have to be web-based
applications or even applications at all. For example, some organizations use GitHub for
document management and GitHub Actions for distributing the documentation within an
organization. But we are interested in using GitHub Actions to implement CI/CD, and this
section will provide an overview of what GitHub Actions can do.

GitHub Actions allows us to define a series of steps, called a workflow, that can be
triggered by a specified event. The event can be based on another event, scheduled, or
manually triggered. For example, in the Building CI/CD using GitHub Actions section, we
will use the Git push event to trigger our workflow.

Each workflow can consist of one or more jobs. A job is a series of sequential steps
designed to run on a specified type of runner. Think of a runner as a class of VM. For
example, you might have a requirement to build a Windows package or to use a specific
type of hardware. The runner defines what type of machine is required. The runner can be
GitHub-hosted or self-hosted. In our CI/CD example, we will be using a GitHub-hosted
Linux VM to build our ASP.NET Core application. This is because the target environment
that we will be hosting our application in is Linux.

Within a single workflow, it is possible to use a combination of runners. For example,
you might have a single workflow that performs two jobs. The first is to build a Windows
image, and the second builds a Linux image. One workflow will run on a Windows runner
while the second will run on a Linux runner. By default, each job will run in parallel. In
our CI/CD example, we will show how a dependency can be created between two jobs.
When a dependency is created, the jobs are not run in parallel but in dependency order.

https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners

Building CI/CD using GitHub Actions 499

As we said earlier, a job is a series of steps. Each step can be either an action or a
command. An action is a combination of commands. These are made public by GitHub
or members of the community. You can also author your own actions. For example, your
organization might have a proprietary signing process that you want to use in several
workflows. You can then author a private action and reference it in your workflows. We
will use both action and command steps in the CI/CD example in the following section.

The workflow is defined in a YAML file. If you remember from Chapter 9, Containers,
YAML is a file format that has been designed to be human-readable with minimum
syntax. This does mean that whitespace, for example, tabs and space characters, is
significant. Fortunately, GitHub has a YAML editor that both provides IntelliSense and
visible hints to help the authoring process. We’ll use the editor in the next section when
we create our CI/CD workflow.

Now that we have a background in CI/CD and GitHub Actions, let’s proceed to the next
section and create our CI/CD workflow to deliver our ASP.NET Core application.

Building CI/CD using GitHub Actions
Now that we have discussed CI/CD and had a look at some of the capabilities provided by
GitHub, let’s have a look at using GitHub Actions to deploy an ASP.NET Core application.
As we have forked the Packt master into our own repo in the previous section, Making a
copy of the repo, we are ready to begin.

Our plan is to deploy an ASP.NET Core WASM application to GitHub Pages. We covered
the sample WASM application in the previous chapter. The next section gives an overview
of GitHub Pages.

What is GitHub Pages?
GitHub Pages is a convenient and powerful way to host a static website using all the
power of GitHub, including global distribution, without worrying about hosting. In many
cases, it is a convenient way to host a website with information about the repository it
is associated with. But there is no reason why it cannot be used in other circumstances.
For example, in Google or Bing, search build a blog in GitHub Pages as an
example. And, as the static website is sourced in GitHub, the site content is stored in a
private or public version-controlled repository.

500 Integrating with CI/CD

The source of the static website can either be a special folder in your main branch called /
docs, or it can be a separate branch. In our example, we are going to publish the content
of the project to a separate branch. GitHub Pages is normally powered by Jekyll, a static
website generator. In our case, we don’t need static to power our website, so we need to
disable Jekyll.

This is done by simply creating a file called .nojekyll. In GitHub, navigate to the
wwwroot folder inside of the Chapter 12 sample project. Remember to do this
in the forked copy we made previously as shown in Figure 12.4:

Figure 12.4 – Create a new file

In the previous screenshot, we can see both the location of the wwwroot folder and the
dropdown to create a new file. Once selected, simply enter the name, .nojekyll, and
save by committing the change as shown in Figure 12.5:

Figure 12.5 – Commit new file

By placing the file in the wwwroot folder, the file will be included when we publish the
website later. Now that will let GitHub know we don’t need Jekyll, let’s get started with
GitHub Actions.

Building CI/CD using GitHub Actions 501

Creating a CI/CD workflow
GitHub Actions allows us to build a CI/CD workflow. In other tools for managing CI/
CD, such as Azure DevOps, which we will talk about in Chapter 13, Cloud Native, you
see this referred to as a pipeline. The term CI/CD pipeline, or workflow, basically refers
to a sequence of automated actions. In our example, we will have two main jobs in this
sequence: building the project and deploying the project.

These actions are contained in a YAML file. Let’s go ahead and create one. In GitHub, click
on Actions in the menu bar as shown in Figure 12.6:

Figure 12.6 – Actions menu

As our repository does not have any existing actions, we are greeted with several options,
including several templates to help us get started. Have a read through them to get an
idea of the different supported scenarios, and when ready, select the option to set up a
workflow yourself as shown in Figure 12.7:

Figure 12. 7 – Set up a workflow yourself

This will create a starting YAML file, but let’s replace the generated file with the following
content so we can explain the different parts as we complete them:

name: Build and Deploy ASP .NET Core Chapter 12 to GitHub Pages

on:
 # trigger the workflow only when a push happens in Chapter 12

jobs:
 build:
 steps:
 # steps to build the application

 deploy:
 steps:
 # steps to deploy the application

502 Integrating with CI/CD

The name is useful to describe the workflow. A good name is useful in identifying the
purpose of the workflow. Imagine you have one workflow for deploying to a development
environment or a production environment. This should be reflected in the name to avoid
confusion.

Next, we define what triggers our workflow. This can range from a manual trigger to pulls
or pulls to the repository, or on a schedule. The different capabilities can be found in the
Further reading section at the end of the chapter.

Go ahead and replace the existing comment as follows:

on:
 push:
 branches: [master]
 paths:
 - ‘Chapter 12/Chapter_12_GitHubActions_Examples/**’

The previous code snippet will cause the workflow to trigger when a push is performed
on the master branch in the Chapter 12 folder. This means whenever a change is
committed to the repository in any folder under Chapter 12, this workflow will be run.

Now that we have the trigger defined, let’s complete the build job in the next section.

Creating a continuous integration job
In this section, we will define our CI or build job. This job will comprise the following
steps:

1.	 Retrieve the source code from the repository.

2.	 Set up the .NET environment.

3.	 Publish the ASP.NET Core application.

4.	 Save the published application as an artifact.

After you read the list, you might wonder why we have the first couple of steps?

Building CI/CD using GitHub Actions 503

The answer brings us to the first part of setting up our job. Each job runs on build runners.
These are pre-configured Windows or Linux VMs. You can use your own runners, known
as self-hosted runners. For our purposes, we will use a Linux VM by adding the following
code snippet shown in bold:

jobs:
 build:
 runs-on: ubuntu-latest
 steps:

Now that we have specified that our build job should be run on a Linux VM, let’s add our
first step:

1.	 After the steps: line, add the following code snippet:

- uses: actions/checkout@v2

There are two main types of steps: run and uses. The run step is used to execute
commands on the runner. The uses command will execute a community action.
Think of a community action as a repository containing a group of run statements
created to accomplish a task. In the previous code snippet, we are executing version
2 of the checkout community action. The checkout action will check out the
repository so the workflow can access it.

Note
You can read the details on the checkout repository at https://github.
com/actions/checkout.

2.	 The next step sets up .NET on the runner. Unless we set up the .NET environment,
the runner will not be able to run any required dotnet commands:

- uses: actions/setup-dotnet@v1
 with:
 dotnet-version: ‘5.0’

In the previous code snippet, we will be using the community setup-dotnet@v1
action, and we need to specify the version of .NET we require.

https://github.com/actions/checkout
https://github.com/actions/checkout

504 Integrating with CI/CD

3.	 The next step is to run the publish command. This is shown in the following
code block:

- name: Publish app
 run: dotnet publish -c Release ‘./Chapter 12/
Chapter_12_GitHubActions_Examples/Chapter12.csproj’

The previous command illustrates how a name can be associated with a step, and
this is supported for uses steps also. The command to publish has the Release
configuration specified as well as the project file that we are publishing.

4.	 In order to be able to reference the published application in the next job, we are
going to publish or save the published application as an artifact. You have 500 MB of
storage, so we are going to use some of that to store our published application:

- name: Save artifacts
 uses: actions/upload-artifact@v2
 with:
 name: myWASM
 path: ‘./Chapter 12/Chapter_12_GitHubActions_
Examples/bin/Release/net5.0/publish/wwwroot’

The previous snippet will upload the content specified in the path parameter as an
artifact called myWASM.

This completes the first job called build. This workflow will run whenever a check-in is
published to Chapter 12. The source will be downloaded to a Linux runner, built, and
the output saved as an artifact. The completed job is shown in the next code snippet:

 steps:
 - uses: actions/checkout@v2
 - uses: actions/setup-dotnet@v1
 with:
 dotnet-version: ‘5.0’
 - name: Publish app
 run: dotnet publish -c Release ‘./Chapter 12/

 Chapter_12_GitHubActions_Examples/Chapter12.csproj’
 - name: Save artifacts
 uses: actions/upload-artifact@v2
 with:
 name: myWASM
 path: ‘./Chapter 12/Chapter_12_GitHubActions_Examples/
 bin/Release/net5.0/publish/wwwroot’

Now that the CI part of our workflow has been defined, let’s proceed to the CD part.

Building CI/CD using GitHub Actions 505

Creating a continuous deployment job
In this section, we will define a CD job to deploy the published artifact to a new repository
called pages. To do this, we need to set up the pages repository, download our artifact,
and then save the changes.

Note
The CD job has been created using basic Git commands. We suggest exploring
community actions instead of always writing your own. One of the benefits
of GitHub is you are part of a large community of developers. GitHub
Marketplace is a great place to start.

Like our CI job, we also must specify the build runner to use to run our job. We will also
use a Linux VM as indicated in the following snippet:

 deploy:
 needs: build
 runs-on: ubuntu-latest
 steps:

Also, notice the difference shown in the preceding code snippet, when compared to the CI
job. We have specified that the build job needs to have completed without error before
the deploy job will run. If we had not done this, then both the build and the deploy
jobs would be run in parallel. In our case, this would not work, because we need the
artifact published in the build job in order to deploy to GitHub Pages:

1.	 Like the first step in the build job, we will first perform a checkout to set up our
GitHub workspace on our VM:

- uses: actions/checkout@v2

2.	 Next, we will create a new branch to contain our GitHub Pages WASM application:

- name: Create pages branch
 continue-on-error: true
 run: |
 git config --global user.name “GitHub Actions”
 git config --global user.email “your@email.com”
 git checkout -B pages

506 Integrating with CI/CD

The preceding series of commands first sets up information about the current
user. This provides GitHub with context and will be used when the check-ins are
performed. The next step issues a command to switch to the pages branch. The -B
flag will create a new branch, if one does not already exist.

3.	 The next step in our job is to clear the branch of the existing files:

- name: Clear pages branch
 continue-on-error: true
 run: |
 git rm -rf .
 git commit --allow-empty -m “root commit”
 git push -f origin pages

The preceding code will remove any existing files, commit the change to the
repository, and then push this back to the repository. This step is required, in case
we already have files in the repository from a previous deployment.

4.	 Now that we have cleaned the folder, we want to download the output that we
created in the build job:

- name: Download build artifact
 uses: actions/download-artifact@v2
 with:
 name: myWASM

The preceding command uses a community action to download the artifact called
myWASM.

5.	 The final step will commit the changes back to the pages branch:

 - name: Commit changes
 run: |
 git add .
 git commit -m “publishing WASM”
 git push --set-upstream origin pages

In the previous command, the files from the downloaded artifact are added back to
the repository, committed, and then pushed back to the repository.

This completes our workflow. Go ahead and save the file and proceed to the next section.

Building CI/CD using GitHub Actions 507

Monitoring actions
Now that our CI/CD workflow has been defined, it is time for us to trigger the workflow.
As we have used the path filter on changes made to the Chapter 12 folder, let’s edit one
of the files.

In the Code tab, navigate to the wwwroot folder as shown in Figure 12.8:

Figure 12.8 – wwwroot folder

In that folder, select the index.html file and use the pencil icon to edit the file as shown
in Figure 12.9:

Figure 12.9 – Pencil icon

Go ahead and change the text in the title element as shown in Figure 12.10:

Figure 12.10 – Editing the title

After committing the change, navigate to the Actions tab. You should see something
similar to Figure 12.11:

Figure 12.11 – All workflows

508 Integrating with CI/CD

This shows that a workflow has been triggered and is currently running. The history of
previous runs will be available. Let’s click on the running workflow to see the details of
what is happening.

This will change the view to show the jobs that are running in the workflow. In the Figure
12.12, the Build and Deploy ASP.NET Core Chapter 12 to GitHub Pages workflow
includes two jobs, build and deploy, and has completed the workflow without error:

Figure 12.12 – Workflow detail

Also, notice how the produced artifact, myWASM, is shown. The artifact is a ZIP file,
which allows you to download the file in case you need to troubleshoot any issues.

There is one last step we need to do before we can view our GitHub Pages.

Configuring GitHub Pages
In this section, we will set up GitHub Pages. We will be hosting the output of our CI/CD
workflow using GitHub Pages, and fortunately, GitHub Pages provides a flexible way to
select where in the repository the content is located:

1.	 GitHub Pages can be configured under the Settings tab:

Figure 12.13 – Settings

2.	 In Settings, scroll down until you find the section about GitHub Pages, as shown in
Figure 12.13:

Building CI/CD using GitHub Actions 509

Figure 12.14 – GitHub Pages
The previous figure shows that GitHub Pages is currently disabled.

3.	 To enable it, we select the pages branch as shown in Figure 12.15:

Figure 12.15 – The pages branch

4.	 After saving, the URL of your GitHub Pages site will be shown. It should be similar
to Figure 12.16:

Figure 12.16 – GitHub Pages published URL

510 Integrating with CI/CD

5.	 After clicking on the URL, we will encounter an issue as seen in Figure 12.17:

Figure 12.17 – Loading issue

6.	 If you review the errors in the browser’s developer tools (press F12 to access them),
you will see several of the files are not able to be loaded as shown in Figure 12.18:

Figure 12.18 – 404 errors

7.	 Go ahead and navigate to the Network tab and press refresh to load the page again.
You should see the same network errors, but this time if you click one of the failed
requests, you will get some additional information as shown in Figure 12.19:

Figure 12.19 – Request URL
In the preceding figure, notice the URL is not constructed correctly. The correct
URL should have the name of our repository included. In the example, this
would be https://chilberto.github.io/ASP.NET-Core-5-for-
Beginners/css/bootstrap/bootstrap.min.css.

Fortunately, the fix is simple.

https://chilberto.github.io/ASP.NET-Core-5-for-Beginners/css/bootstrap/bootstrap.min.css
https://chilberto.github.io/ASP.NET-Core-5-for-Beginners/css/bootstrap/bootstrap.min.css

Building CI/CD using GitHub Actions 511

Fixing the base reference
In this section, we will set the base reference for our website. We need to do this as GitHub
is not hosting the pages at the root of the website but under the repository name. This
means we need to insert the repository name into the URL:

1.	 Back in the Code tab, navigate to the wwwroot folder and select the index.html
file. In the file, locate the base element as shown in Figure 12.20:

Figure 12.20 – Updating the base element

2.	 Update this line to be the following:

<base href=”/ASP.NET-Core-5-for-Beginners/” />

3.	 After committing the change, the workflow will be triggered again. Wait until this
has completed.

4.	 Once done, refresh the GitHub Pages, and you should see the ASP.NET Core
WASM application as shown in Figure 12.21:

Figure 12.21 – Hello, world!
Depending on your browser and the speed of GitHub refreshing the change, you
might need to wait an additional minute before you notice the change. If the change
still is not reflected, try clearing or disabling your browser’s cache.

512 Integrating with CI/CD

You can do this on the Network tab by selecting Disable cache as shown in Figure
12.22:

Figure 12.22 – Disable cache

After we have disabled the cache on the Network tab, and now that we have a basic CI/CD
workflow running, let’s look a bit more into what is happening.

Logging the CI/CD workflow
Unfortunately, sometimes things don’t work. One of the reasons to automate the build and
deployment of applications is to prevent human error, but how do we investigate when
there is something not working with our CI/CD workflow? This section will break our CI/
CD workflow to illustrate how to investigate when there are issues in a build step:

1.	 To do this, let’s cause a syntax error in our code. In the code branch, navigate to the
project file as shown in Figure 12.23:

Figure 12.23 – Breaking the project

2.	 Inside the project file, find the section that specifies the target framework as shown
in Figure 12.24:

Figure 12.24 – Target framework
The previous screenshot shows the project file is specifying .NET 5.0 as the target
framework.

Building CI/CD using GitHub Actions 513

3.	 Go ahead and change this value to netcoreapp3.1,as shown in the next code
snippet:

<TargetFramework>netcoreapp3.1</TargetFramework>

After committing the file, the workflow will start automatically, but then it will fail
when the ASP.NET Core project is published.

4.	 Click on Actions and then running workflow and monitor the workflow until it fails
as depicted in Figure 12.25:

Figure 12.25 – Failure publishing app
The preceding screenshot shows the status of the workflow after the failure. Notice
how the build step indicates the Publish app step failed. Also notice that the
following step, Save artifacts, did not run. And, the following job, deploy, also did
not run as we had specified that it had a dependency on the build job completing
without error.

514 Integrating with CI/CD

5.	 We can expand the Publish app step to view additional details. Have a look through
the log to find where the error is reported. An example of this is given in Figure
12.26:

Figure 12.26 – Error reported

6.	 Take a moment to find the cause of the failure. You should find the text 5.0.0 is not
compatible with netcoreapp3.1, which indicates that the packages we are trying to
use are not compatible with the .NET Core 3.1 framework.

There is one nice feature we would like to highlight. You will notice that each line
in the log is numbered. If you click on the number, then you will notice the URL
changes. For example, we clicked on the first failure on line 32 and our URL changed
to https://github.com/chilberto/ASP.NET-Core-5-for-Beginners/
runs/1409342784?check_suite_focus=true#step:4:32. The URL can
then be shared with other teammates, and instead of saying the build is broken, please
investigate, the URL can be sent to teammates to direct them immediately to the reported
issue.

We will include more information about GitHub Actions in Further reading as we have
only highlighted some of the basic functionality and features.

Next steps with GitHub Actions
There are many features in GitHub Actions that are worth mentioning, especially when
we consider enterprise scenarios. In the example we used in the previous sections, we
are deploying to a single environment, and in many enterprise scenarios, there will be
multiple environments. Each environment might require a different configuration, for
example, connection strings. One way of solving this requirement is by using secrets.

A repository secret is an encrypted variable that can be used in a GitHub Action. In
both public and private repositories, only users with the appropriate access can view and
maintain secrets. A secret is defined in the Settings sub-menu as indicated in Figure 12.27:

https://github.com/chilberto/ASP.NET-Core-5-for-Beginners/runs/1409342784?check_suite_focus=true#step:4:32
https://github.com/chilberto/ASP.NET-Core-5-for-Beginners/runs/1409342784?check_suite_focus=true#step:4:32

Building CI/CD using GitHub Actions 515

Figure 12.27 – GitHub Secrets

Once the secret has been defined, it can be accessed in a GitHub action. As an example,
let’s say we have three secrets defined for each environment’s database access as shown in
Figure 12.27:

Figure 12.28 – Defining secrets

516 Integrating with CI/CD

In a GitHub Action, the value can be accessed by using the following syntax:

${{ secrets.QA_DATABASE_KEY }}

In the preceding code, the value held in the QA_DATABASE_KEY secret will be
substituted into the action. This is both more secure than storing in our YAML file, and it
provides a convenient way to reuse the same script for multiple environments.

To see why it is more secure, we need to look at our workflow. In the repository, navigate
back to the root of the repository as shown in Figure 12.29:

Figure 12.29 – .github/workflows folder

In the previous screenshot, we can see a folder, .github/workflows, has been created.
This location is where GitHub stores the workflows in the repository. If you look inside the
folder, you will see the workflow we created earlier:

Figure 12.30 – main.yml

Summary 517

Another feature to highlight is the GitHub API. The GitHub API provides a programmatic
way to access GitHub. This can be combined with GitHub Actions by setting the workflow
to be triggered, based on a GitHub API event. For example, imagine a scenario where a
release to production only happens when the testing lead approves the release. This might
be done in another system designed to manage test cases called SystemX. When the
approval is done, SystemX uses a webhook to notify GitHub by creating a tag. A tag is a
common way of marking a release.

Note
A webhook is a lightweight web service. See https://docs.github.
com/en/free-pro-team@latest/rest for more information.

We then create a workflow that is triggered when a tag is created, by using the following:

on:
 create

This is one example of how different features can be used together to build a CI/CD
process that fits your requirements.

Another important aspect to mention is the CI/CD process does not have to be combined
into a single workflow. We did this in our example, but we could have had a separate CI
and CD workflow. The CI workflow would still publish a package, and the CD workflow
would be triggered when a package is added to the registry. The following code snippet
provides the required trigger:

on:
 registry_package:
 types: [published]

We will include additional links in the Further reading section.

Summary
In this chapter, we discussed CI/CD and provided a practical example using GitHub
Actions. CI/CD provides a better way of getting our ASP.NET Core projects delivered. It
is more efficient than manual deployment and less error-prone. Even the simple sample
application we provided has multiple deployment steps. For larger projects, the number of
steps could become great enough to make deployment to large environments impractical.

https://docs.github.com/en/free-pro-team@latest/rest
https://docs.github.com/en/free-pro-team@latest/rest

518 Integrating with CI/CD

GitHub has great support for CI/CD, using GitHub Actions. We automated both the
build and deployment of an ASP.NET Core WASM application. The workflow used both
commands and community actions. Our sample workflow was triggered by a Git push to
the repository, and in the Next steps with GitHub Actions section, we highlighted how the
GitHub API could be used to trigger workflows by other GitHub events.

In the next chapter, we will look at building cloud-native applications. This is more
than just picking a great technology, for example, ASP.NET Core, for building your
applications. We will look at different categories of cloud services. We will look at the
design decisions that you need to make when building for the cloud, compared to more
traditional applications.

Questions
1.	 Does GitHub Actions require a paid plan?

2.	 Can you only use GitHub for web applications?

3.	 Does GitHub Actions require both CI and CD to be in the same workflow?

4.	 Can you use CI/CD when deploying to cloud providers?

Further reading
•	 Git overview provided by Git at: https://git-scm.com/

•	 GitHub overview provided by the GitHub team at: https://guides.github.
com/activities/hello-world/

•	 GitHub Actions provided by the GitHub team at: https://docs.github.com/
en/free-pro-team@latest/actions

•	 Information about triggering workflows by the GitHub team at: https://docs.
github.com/en/free-pro-team@latest/actions/reference/
events-that-trigger-workflows

•	 Progressive Web Application Development by Example by Chris Love, from Packt
Publishing, available at: https://subscription.packtpub.com/book/
application_development/9781787125421

https://git-scm.com/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://docs.github.com/en/free-pro-team@latest/actions
https://docs.github.com/en/free-pro-team@latest/actions
https://docs.github.com/en/free-pro-team@latest/actions/reference/events-that-trigger-workflows
https://docs.github.com/en/free-pro-team@latest/actions/reference/events-that-trigger-workflows
https://docs.github.com/en/free-pro-team@latest/actions/reference/events-that-trigger-workflows
https://subscription.packtpub.com/book/application_development/9781787125421
https://subscription.packtpub.com/book/application_development/9781787125421

Further reading 519

•	 GitHub Essentials: Unleash the power of collaborative development workflows using
GitHub, Second Edition by Achilleas Pipinellis, from Packt Publishing at:
https://subscription.packtpub.com/book/
web-development/9781789138337

•	 Implementing Azure DevOps Solutions by Henry Been, Maik van der Gaag, from
Packt Publishing at:
https://subscription.packtpub.com/book/cloud_and_
networking/9781789619690

https://subscription.packtpub.com/book/web-development/9781789138337
https://subscription.packtpub.com/book/web-development/9781789138337
https://subscription.packtpub.com/book/cloud_and_networking/9781789619690
https://subscription.packtpub.com/book/cloud_and_networking/9781789619690

13
Developing Cloud-

Native Apps
No buzzword has been more prominent over the past couple of years than cloud, and for
developers, this has been extended to the term cloud-native apps. Looking at the lower-
level details in the C# language, you would expect these to work pretty much the same
wherever the code is executed, so you are left wondering whether there is anything to it or
whether it is just hype.

Chapter 10, Deploying to AWS and Azure, demonstrated a number of cloud deployments.
In this chapter, we will dive deeper and go through things you need to understand and
consider when building cloud-native applications, as well as reviewing concepts that are
central to cloud computing.

We will cover the following areas in this chapter:

•	 What makes an application cloud-native?

•	 The role of DevOps

•	 Understanding cost in the cloud

•	 Cloud storage versus local disk

•	 Infrastructure as Code

•	 Monitoring and health

522 Developing Cloud-Native Apps

This chapter covers both practical code examples to bolster the cloud developer role and
theory that would be more in the realm of a cloud architect. The aim is not that you will
be a fully fledged architect at the end of this chapter, but rather that you understand how
some of the cloud paradigms affect you as a .NET developer.

Technical requirements
This chapter includes short code snippets to demonstrate the concepts that are explained.
The following software is required to make these work:

•	 Visual Studio 2019: Visual Studio can be downloaded from https://
visualstudio.microsoft.com/vs/community/. The Community edition
is free and will work for the purposes of this book.

•	 Some of the samples require you to have an Azure subscription. If you don't have
one already, you can create one by going to the Azure portal (https://portal.
azure.com) and signing up for a free account.

•	 The DevOps examples refer to Azure DevOps. A single developer can sign up for a
free account at https://dev.azure.com.

For lab purposes, all of the samples in this chapter are possible to test free of charge,
but regional-specific requirements might require the use of a credit card for verification
purposes.

The source code for this chapter is in the GitHub repository at https://github.
com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/
Chapter%2013.

Please visit the following link to check the CiA videos: https://bit.ly/3qDiqYY

What makes an application cloud-native?
Before diving into how cloud applications are implemented, and what you need to
consider, we need to look into what cloud apps are. This includes both definitions of
cloud operating models in general, what makes the cloud different to on-premises, and
an investigation of these differences in more detail. There is no standardized text book
answer for the term cloud-native, or a list of checkboxes to tick, but this chapter attempts
to shed some light on common practices associated with the term.

https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://portal.azure.com
https://portal.azure.com
https://dev.azure.com
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2013
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2013
https://github.com/PacktPublishing/ASP.NET-Core-5-for-Beginners/tree/master/Chapter%2013
https://bit.ly/3qDiqYY

What makes an application cloud-native? 523

With cloud computing, you will hear all kinds of as a Service suffixes, with some making
more sense than others. As explained in Chapter 10, Deploying to AWS and Azure, the
pillars here are the following three acronyms:

•	 IaaS – Infrastructure as a Service

•	 PaaS – Platform as a Service

•	 SaaS – Software as a Service

A classic analogy for explaining these is pizza as a service. At one end of the spectrum,
you have the scenario where you start in your kitchen with flour, tomatoes, and all the
other ingredients needed. You have full control of everything and can customize things
to your liking. At the other end of the spectrum, you are going to a restaurant where you
point to an entry in a menu, wait a couple of minutes, and have it delivered to your table.
In between, you have options where, for example, you buy pre-made dough and sauces to
make it more of a LEGO-building experience at home.

If you are a good cook, you can probably get good results by making everything from
scratch. However, even if you happen to enjoy this task, there is no denying that it is more
work than dining out. If you happen to be a terrible cook, it is probably better to just place
an order at your local pizza take-away.

To not drift too far from the technical themes, the responsibilities you have versus what
the cloud provider is responsible for, can be illustrated as shown in Figure 13.1:

Figure 13.1 – XaaS responsibility

As you can see, more control means more responsibility.

524 Developing Cloud-Native Apps

We all love having the full range of options available to us that on-premises hardware
gives us, but in practice, the restaurant experience can be pretty nice as well. Early cloud
services were often too narrow to be used outside tightly defined boundaries, but these
days there are usually a lot of ways to tweak the services to your liking, so this is less of
an issue.

IaaS has advantages over the on-premises model, but most of these will be of less interest
to developers than to individuals concerned with infrastructure. Having virtualized
hardware is great, but most developers have already abstracted themselves away from
figuring out which cable goes where in the back of a server rack. Going more or less
directly from on-premises to IaaS is possible, due to the fact that the top five layers can be
bundled into a virtual machine (VM).

If you're already running VMs on-premises, this move can be fairly easy, as it can be
uploaded as is with just a few operating system settings reconfigured. If you're not using
virtualization and running directly on the server, or bare metal as it's often called, there
are tools for migrating the workload to VMs that you can subsequently migrate to the
cloud. This type of cloud migration is called lift and shift. While this is a possible, and
sometimes recommended, re-hosting model, it is not considered cloud-native. A VM
running in the cloud still means attending Patch Tuesday. (Microsoft releases patches
every second Tuesday of the month, hence the nickname.)

SaaS is great for end users – some of these services can be purchased with very little
technical insight and they just work. Of course, if you want to learn how to make a good
pizza, it's of little help buying the finished product, so even though you may enjoy the
services, it might not help you build new applications for your purpose.

As a developer, PaaS will usually be the sweet spot for building new services. Instead of
building every piece of the stack yourself, you can pick the best pre-made components and
build on top of these. For instance, you will need a web server of some sort, and you want
to make sure it can run your programming language and associated frameworks, but you
don't really care about the low-level details of how that is provided. And a web server itself
is just an empty shell with no value before apps are installed.

Arguably you could say that a service such as Office 365 is both a SaaS and a PaaS, since it
offers a rich API layer for integration with your own services, but such observations don't
change the basic models.

This will serve as useful background information, when we delve into the next topic,
where we compare classic on-premises characteristics to the cloud equivalents.

What makes an application cloud-native? 525

Comparing characteristics of on-premises versus
the cloud
The first thing many say when they hear about cloud computing is that's it's just another
data center, and that it's really no different than putting up a couple of racks on your own,
as long as you install the right software. And in one sense, that is correct. While most
companies cannot afford the scale of Azure and Amazon, you have options for installing
various cloud solutions on-premises, thereby replicating the experience.

There are still a couple of differences, though, and you can talk about there being different
mindsets. In Figure 13.2, you can see a comparison of the traits of classic on-premises
software versus the cloud-native models:

Figure 13.2 – On-premises characteristics versus cloud characteristics

It is possible to be at various stages in between the extremes, and these are just the
general traits. It is entirely possible to do cloud things even if you're not using a public
cloud provider.

Let's elaborate on these traits in the following sections.

Monolithic versus microservices architecture
Software architecture is a large topic, and once you move from simple apps to building
systems, there are many design-time decisions that can trip you up. When the boundary
for compute was buying new servers in a rack, you often ended up with a monolith by
default. If you told the operations department that you wanted separate servers for the
backend and the frontend, they would laugh before rejecting your request. Separation of
the two would be okay, only if the load generated required more computers.

526 Developing Cloud-Native Apps

In the cloud, this should no longer be a worry. If you design a container-based solution
with microservices for different tasks, you are paying for the total compute. The
monolithic server is no longer a boundary, and you should not be constrained by it. This
is not to say that every piece of software built should be broken into microservices, but
usually you will want to look into it when planning the architecture.

Planning for scalability
Knowing how much computing power you need is hard. Yes, you can make educated
guesses, but there's still some randomness you are not in control of. Should you over-
provision and buy more hardware than you need? What if you don't have enough
hardware when the load hits you – how quickly can you get more servers into the rack?

One of the reasons why Amazon got into the cloud provider business was the scalability
problem. Like many online retailers, Amazon sells way more items in the last part of the
year leading up to Christmas than they do the rest of the year, and they needed a lot of
horsepower to handle this, so they built multiple data centers to handle the load. The
problem is – after the clear-out sales in January, the compute power sat there idle just
costing them money. The business opportunity was that this excess capacity could surely
be provided to other companies, and billions of dollars of revenue later, we can say that
this was a good idea.

If you have a cloud-native application, you can design for this type of scale. It does not
take weeks to order a server and have it delivered. You can reduce it to mere minutes for
creating VMs and, depending on your workloads, it may even be a matter of seconds.

Do take note that the cloud also has some limits, so if you know Black Friday is coming
up, you should not plan on allocating hundreds of servers the night before – you may not
be able to do so without a heads up to the cloud provider.

There are two types of scaling mechanisms – scale up and scale out.

Scaling up versus scaling out
Scaling up is when you add more units of compute. Instead of having two servers handling
the load, you add another one, meaning you have three.

Scaling out is adding more resources to your compute units. Adding more memory and
more storage would be good examples of this. The number of servers stays the same.

What makes an application cloud-native? 527

To decide which one is the right model for you, it's necessary to figure out what is driving
your resource consumption. If the CPU is sitting between 20 to 30% load, but the memory
is in the 90+ range, add more memory (scale up). If the CPU is hitting its maximum load,
add more server instances (scale out).

The exact details, in terms of how you do this, depends on which service you are using,
but most of the available services will have options for setting up some kind of autoscaling
mechanism that will let you add more power when you need it. For full dynamic handling,
you can usually also scale down automatically, and you can also schedule things to be
turned off when you know there will be little load.

Working with different database types
When you think of a database on-premises, very often they are some implementation of
SQL. (This could be MS SQL, Oracle, MySQL, or others.) These are relational databases
and rely on a database model of tables with relations between them.

For instance, a table for a Person entity could look like Figure 13.3 in the Visual Studio
designer:

Figure 13.3 – Person table

The corresponding SQL code would be something like this:

CREATE TABLE [dbo].[Person]
(
 [Id] INT NOT NULL PRIMARY KEY,
 [FirstName] VARCHAR(50) NULL,
 [LastName] VARCHAR(50) NULL,
 [Address] VARCHAR(50) NULL,
 [ZipCode] VARCHAR(10) NULL,
 [State] NCHAR(2) NULL
)

528 Developing Cloud-Native Apps

In C# code, you are more likely to use a syntax, such as Linq, as that is more developer-
friendly, but the principles are the same in both cases.

This is an example of the data being adopted to schema on write. When you write to the
database, the SQL engine will verify that your data is correct – if you try to write a string
into an integer field, it will not work.

There is usually also some locking mechanism to ensure that application A and
application B cannot write to the same attribute at the same time. Given good throughput
on the database server, this might not be noticeable, but it's not to be ignored for multi-
user scenarios.

This is great for many use cases, as it ensures high integrity and consistency. For use cases
such as a bank account, this is what you want. Having sloppy mechanisms, for how money
goes in and out of the account, is bad for everyone.

The drawback is that it requires the code for writing to the database to be more complex,
and even with beefy hardware, it will be inherently less capable of ingesting larger
amounts of data in a short time frame.

As an option, a more cloud-like offering would be document databases (such as Azure
Cosmos DB and MongoDB).

If you have thousands of IoT sensors capturing data, your focus is getting the data into the
database. If one temperature reading is off by one degree, it's probably not a major issue.
You want throughput, so instead of enforcing the schema on write, you just insert a JSON
document with the contents you like.

When you need to extract the data and present it, you probably need to have some rules
for the data type – this is called schema on read. This gives you the option of handling a
datetime value, such as a string representation when it's just for display purposes and as an
actual datetime type when you need to handle it as such.

A JSON instance of a person could look like this:

{
 "FirstName": "John",
 "LastName" : "Doe",
 "Address" : "One Microsoft Way",
 "ZipCode" : "98052",
 "State" : "WA"
}

In this instance, we see that we don't adhere to the schema constraints defined for a SQL
record. We just treat the attributes as plain text.

What makes an application cloud-native? 529

Inserting this into a Cosmos DB database, using an SDK, would look something like this:

ItemResponse<Person> personResponse = await
 this.container.CreateItemAsync<Person>(johndoe, new
 PartitionKey(person.LastName));

Console.WriteLine("Created item in database with id: {0} ",
 personResponse.Resource.Id);

Note that this code omits the class definition and connection to the database, but it
illustrates how you just supply a JSON document to create a new item.

When you have a globally distributed document database, this pattern makes it harder
to always be in sync, which is why we often refer to eventual consistency. Going back to
the bank account example, this is probably not what you want, but if someone watching
a stats dashboard in Europe has a delay of a couple of seconds compared to the US, that's
probably not a problem.

Delays in storing data isn't just about the database technology; it is also about getting
synchronization and multi-processing right.

Synchronicity and multi-processing tasks
Parallel processing and asynchronous requests are not exclusive to the cloud. On the
hardware side, there have been many abstractions over the years, since true parallelism is
hard to achieve, but as an end user, you always want the experience of things happening at
the same time, with no dependency on other things going on in the background.

The cloud was built with this in mind. When you have services that need to handle billions
of requests daily, it's just not possible to handle this by neatly and orderly processing one
request at a time. As a user of the cloud, you might not have to deal with that volume of
requests, but you should still look at it as a default.

Asynchronous behavior is important when creating web apps, because most likely you
want to have a snappy experience for the user. When you block the UI for seconds while
waiting for an API call backend to time out, you will have unhappy users.

Fortunately, the .NET templates help you in this regard by generating async code where
applicable.

530 Developing Cloud-Native Apps

As an example, you could have the following in a controller in a web app, as synchronous
code:

[HttpGet]
public string HelloWorld()
{
 return "Hello World";
}

If you were to rewrite it to asynchronous code, it might look like this instead:

[HttpGet]
public async Task<string> HelloWorld()
{
 return "Hello World";
}

It is important to be aware that you open yourself to bugs that are harder to troubleshoot.
For instance, if you instantiate an HTTP client call and dispose of the connection, before
actually receiving the response, it can be interesting stepping through the debugger to
figure out.

As always, you need to understand what you are trying to do, but in general, this is the
preferred method for cloud-native.

Avoiding failure versus expecting failure
One of the hardest things we do in code is handling the unexpected, and this applies
whether you run in the cloud or in locally installed hardware. The way it is handled might
differ between these two hosting options.

If you have 10 enterprise-grade servers on-premises, the odds are that unless they fail in
the first couple of weeks, they are going to work for a long time. If one fails, you call the
hardware supplier and have a technician come on site to repair it.

You build in redundancy in your code, of course, but it may be limited to assuming two
servers are available and needing a manual switchover between them if one fails.

If you have 100,000 servers, the odds are more than one is going to fail in the course of a
year, just by doing the probability math. The cloud providers have abstracted this problem
away from you as a developer. They buy servers by the container, and the scale of the
operations means it is not guaranteed a technician will be able to replace failed hardware
in a short enough time frame for it to not have an impact, which is why the cloud is
designed to keep operating, even when individual pieces start to fail.

What makes an application cloud-native? 531

Even when the hardware is not failing, there's the risk that the operating system requires
updates. If an important security update is rolled out, the cloud provider will not wait
until it is convenient for you to apply it – they will do it as soon as possible.

Many of us have experienced software that makes assumptions that you will always be
able to shut it down in an expected and correct manner. It could be that it expects to lock
resources when running that are to be released on shutdown, or other things where the
assumption is made that the system is stable and available. When things go wrong and
you start it up again, you're greeted with a message that the previous shutdown failed, so
you're asked to jump through these hoops to get back up and running.

This is not the way to do it in the cloud. You should expect that the processes can be killed
in unplanned manners, and the important thing is to make sure that new instances are
able to spin up as quickly as possible, without manual intervention.

Note that backup is a separate consideration. You should always make sure you have a
strategy for backing up and restoring vital data, regardless of how and when the system
goes down.

Understanding cloud update schedules
With limited scaling options and the need to plan the availability of resources, the
on-premises world usually practices planned downtime. Many companies still have
maintenance windows that you must hit for updating your software. This often involves
developers having to be available either to perform updates or be on call if something bad
happens during the night or at weekends.

With good cloud-native code and tooling, this should be a thing of the past. The cloud
provides mechanisms for deploying to a staging site, where you can do basic testing and
do a one-click switch to turn it into the production version if the testing passes. Or, you
can have two versions deployed to production and configure so-called A/B testing, where
only some of the users are exposed to the new version to see how they respond.

It all boils down to business needs. If you operate on the scale of Google, Facebook, or
Netflix, there is never a good time to go offline. The services are accessed around the clock
on all days of the year. It is also not an option to only do big-bang updates once a quarter
– if you have an improvement for the site ready, it should go live as soon as possible.

With source control tooling, we've learned to check in early and check in often. Cloud
native also means to release early and release often.

532 Developing Cloud-Native Apps

Administration of servers and services
As a developer, it's not unlikely that you think of administration as something reserved
for the administrator. For some things, this is very much true – if someone maintains a
Windows server on-premises or in the cloud for you, it's not a concern for you how it's
administered.

Unfortunately, in real life, the developer doesn't always get to avoid all admin tasks. To
minimize the risk, you should create your applications to require as little administration
as possible. If, upon a reboot, there is a page of instructions to follow to get your services
up and running in the right order, how are you going to handle things when the cloud
automatically scales and creates 10 new instances? (Hint: you better learn a scripting
language.)

Pets versus cattle
An often-used analogy concerning resources in the cloud versus resources on-premises
is pets versus cattle. With on-premises hardware, it's something physical and relatable.
A frequent administrator activity is figuring out a naming scheme for the servers – this
could be Greek gods, mountains, superheroes, or the names of Ford car manufacturing
plants. (All of these have been observed in actual server environments.) Certain
peculiarities might be observed as well – that server has a slightly different hard drive/
power supply/network card… In other words – the servers are pets.

In the cloud, you don't get to name hardware resources, and frankly you probably don't
want to figure out how to name a million servers with individual names either. You don't
care which brand the hard drives or memory sticks are either. You expect that when you
order 100 GB of storage and 8 GB of RAM, that will be pretty much the same thing each
time you order. This is treating resources as cattle. When you buy milk from the grocery
store, you really don't care if cow number 143 or cow number 517 was responsible for
producing it.

The mentality of this is only one part of it though. You need tooling for this as well.

When you have pets, you can handle things on a one-by-one basis. For instance, if we
were to provide instructions for you to create a web app in Azure for running code in this
book, the instructions might read like this:

1.	 Log in to the Azure portal.

2.	 Click Create a resource.

3.	 Choose Web App from the list.

4.	 Create a new resource group in the dropdown.

What makes an application cloud-native? 533

5.	 Select a name and the region closest to where you are.

6.	 Select .NET Core 5 as the runtime stack and Windows as the operating system.

7.	 Skip Monitoring and Tags and go to Review + create.

8.	 If there are no errors, click Create.

You'll see something similar to Figure 13.4:

Figure 13.4 – Example of the Web App creation wizard in the Azure portal (.NET 5 not available at the
time of writing)

534 Developing Cloud-Native Apps

How do you handle this when you're told to create 20 web apps? How do you make
sure you're consistent each time and always get it right? If you want cattle, you need a
standardized procedure that is repeatable.

You can start with the manual approach and still produce applications that are cloud
native, but if you want to go all in, you will probably want to investigate Infrastructure
as Code (IaC). (There will be more on this in the Introducing Infrastructure as Code (IaC)
section.)

As previously stated, these are all common traits, and you can put your own touch on
your environment, whether it's in a public cloud or your own data center. When treated as
individual checklist items, you can fix it, but it more or less leads to a wider reaching term
called DevOps.

Understanding the role of DevOps
DevOps is often used without further distinction in terms of exactly what is meant by it,
other than it being something that you require in order to be more agile. Most people will
agree that it is about delivering continuous value by using a combination of products, the
right people, and processes to enable this.

We will not be exploring the people and process parts of DevOps in depth as this is,
after all, a technical book. The important takeaway here is that if you want to increase
agility, you need to have processes that reflect this. For instance, you can have tooling in
place for rolling out new updates multiple times a day. If you have a procedure that says
every release has to be approved manually by different QA and testing teams, that simply
will not work. It fits in well with few and large updates, but not with frequent but small
updates.

On the technical side, the term for what you want is Continuous Integration (CI) and
Continuous Deployment/Delivery (CD). In Chapter 10, Taking ASP.NET to the Cloud,
we showed how to get your code from Visual Studio into Azure and AWS. There's a
frequently used one-liner when it comes to Visual Studio though – friends don't let friends
right-click publish. Chapter 12, Integrating with CI/CD, took note of this and showed how
to get this working with GitHub Actions.

GitHub has been one of the most popular services for developers for many years now, but
the addition of GitHub Actions is a fairly recent development that happened after GitHub
was acquired by Microsoft. The tried-and-tested solution in the Microsoft ecosystem
would be Azure DevOps. Both services are being worked on and improved, but at the time
of writing, Azure DevOps has a slightly more mature offering for enterprise scenarios, as
well as a broader feature set.

Understanding the role of DevOps 535

Azure DevOps is not exclusive to cloud-native applications. It can be used for on-premises
as well, and there's even a demo of it being used for building software for the Commodore
64 (for those of you old enough to have heard of that computer) to illustrate that it is in no
way locked down to Microsoft languages or frameworks.

Azure DevOps has multiple features available to help you build a software development
life cycle in the cloud:

Figure 13.5 – Azure DevOps features

Here are the use cases of the features:

•	 Azure Boards is for managing work items and the general flow of development
tasks.

•	 Azure Repos is for storing your code and the versioning history.

•	 Azure Pipelines is for setting up build and release (CI/CD).

•	 Azure Test Plans is for setting up the testing and QA of your code.

•	 Azure Artifacts is for managing libraries and modules. This can be used for setting
up your own NuGet feeds.

536 Developing Cloud-Native Apps

Under Azure Pipelines, you have Pipelines for setting up builds (the naming convention
is confusing at best). You have what is called the classic wizard that enables you to set up a
build for a range of solutions in a user-friendly way. This wizard lets you pick from a list of
templates as shown in Figure 13.6:

Figure 13.6 – Azure Pipelines classic wizard

Understanding the role of DevOps 537

This gets you going quickly and is great for exploratory work, but it is not the
recommended approach for the long term. The recommended approach is defining your
pipeline using YAML files, which are text-based files. YAML is how GitHub Actions does
it as well, but the two implementations are currently not equal, so you cannot copy the
content of the files back and forth. If you choose YAML instead of classic, you will be
thrown into a textual definition like Figure 13.7:

Figure 13.7 – Azure Pipelines YAML definition

YAML is a markup language used for things such as Kubernetes configuration files and
many other services as well, so this isn't specific to Microsoft either. It is generally more
user friendly to write than XML and JSON, but, on the other hand, it's picky on things
such as white spaces and indentation, so there are things you need to take in here as well
before mastering the format. (Indentation is two characters: three will break.)

With this approach, you can treat your build definitions as part of the code (you can check
it into the same repository as the application's code).

Also, under Azure Pipelines, you will find Releases, which are tightly linked to builds.
This is about taking the output of a pipeline and deploying it. Let's look at the Azure
Pipelines wizard.

538 Developing Cloud-Native Apps

Similar to the build wizard, you have multiple options for where you want the code to live:

Figure 13.8 – Azure Pipelines release classic wizard

There are more options than we could capture in these screenshots, so do take a look if
you need something else. Building and releasing container-based apps is different to a
non-containerized C# web app. Java, Python, and PHP all have their specifics as well,
whether it's how to produce the executables or pushing them to a server.

Release definitions can also be defined as YAML files and checked into the repository.

Compared to the manual steps often involved in deploying software, this represents a
nice improvement. It is not unheard of in legacy setups that the process for releasing new
builds involves the developer building on their local machine, and then copying the result
to a file share, before logging in to a different computer where the files are copied from the
share and deployed. Trying to do full DevOps in such a regime is hard, but the examples
presented in this section demonstrate that it should not be necessary to do so any longer.
Code can be built, deployed, and run in the cloud without the legacy approach.

Understanding cost in the cloud 539

So, lots of good stuff, but there's no such thing as a free lunch in the cloud either;
everything has a cost.

Understanding cost in the cloud
Computing brings more value for your money than it ever has, but there will always be
costs associated with computers, and in business, costs usually need a justification. Many
people have a misconception about services being cheaper by default in the cloud than
running on-premises, but the picture is more complex than you would think at first sight,
so we should explain parts of this picture.

Creating estimates for large solutions and becoming an Excel ninja is beyond the scope of
this book, but in the cloud, developers are often the first line when someone asks where
the money is going.

Most companies can afford to go and buy servers that you can install in your office with
specs that will run either a few web apps or a couple of virtual machines. When compared
with virtual machines in the cloud, you may very well think that it's just another way of
paying for these servers.

In the cloud, there are two primary mechanisms for billing customers – fixed pricing and
consumption-based pricing:

•	 Fixed pricing is where something has a cost per time unit, be it hours/days/months;
for instance, a VM that is billed based on how many hours it's on per month. If the
CPU is loaded to the max or barely doing anything, the cost stays the same. To save
money, you turn it off or scale down the hardware of it. A simple act such as turning
off a test environment during nights and weekends can reduce your bill by 50%.

•	 Consumption-based pricing is where you pay for how much you use of a resource.
This could be storage, where you pay per gigabyte, or a messaging system, where
you pay for events occurring. These resources can be left on 24/7 without any extra
cost – if you don't use it during the night, it doesn't cost anything.

When building solutions, you often need to combine these. In Azure, for instance, you
could have an Azure app service that is billed by time and left on around the clock,
whereas you have a Cosmos DB instance for storing data where you pay based on the
throughput capacity.

540 Developing Cloud-Native Apps

The cost of a service on-premises is usually more complex than the cost of the physical
server alone as well. You have the basics, such as the electricity bill and an internet
connection, but there is a lot more to it. You need networking gear. You need storage.
You need duplicates of everything for high availability and redundancy. You need the
knowledge to configure said redundancy. If you are a small business, you might not even
be able to build comparable infrastructure to what the big players can do. So, make sure
you're comparing apples with apples, instead of complaining that a banana looks different.

If you do things right, you will save money in the cloud, and if you get it wrong, it may
cost more than on-premises.

The cost of storage is one consideration, but storage also works differently in the cloud.

Cloud storage versus local disk
Storage on your developer computer is an easy thing to understand. Even a budget laptop
has an SSD these days, and while it might not compare with the premium options out
there, it's usually sufficient for a simple web app. You store your stuff in C:\foo and there
are no major worries unless Windows crashes or something similar.

Moving your code to production changes a few things. Your code can still remain in C:\
foo on your virtual machine, but the hard drives underneath are possibly configured
differently. This is still not a problem, however.

Storage is cheap these days, at least until you factor in other things. One SSD in a laptop
might not cost that much, but if you want to deploy a web app running locally, you can
bring out the calculator to add on extra costs. Since a hard drive can fail, you need to
double up and put two drives in a mirror. But since that only handles redundancy, you
need two more drives for handling backup (which must also tolerate a drive failure).
Ideally, you need them in different computers with high-speed networking in between,
not to mention that the building might burn down, so you need more physical locations.
It's the gift that keeps on giving.

There's an old joke that goes: How many programmers do you need to change a light bulb?
None, it's a hardware issue.

It's a good thing that we can say the same thing about storage.

If you are the hardware guy, you'll love cloud storage, since you can change the answer to
None – it's someone else's problem.

The powerful thing about cloud storage is that cloud providers already have thousands of
disks, high-speed networking, and multiple locations.

Cloud storage versus local disk 541

We will not delve into the details here, but you need to take a look at the available options
for your provider to make the right choice. At the cheap end of the range, you have
archival storage where the price is low, but it's only intended for files that are not in active
use (hence the name archival), which cannot be used for a running web app. At the pricier
end, you have high-speed NVMe drives automatically replicated across multiple regions of
the world.

Letting hardware be hardware, you, as a developer, also need to understand that things are
changing slightly on your end as well.

Ephemeral versus persistent storage
Usually, in cloud setups, you cannot treat the local drive as persistent. If you run a web
app on a Windows-based host, you will usually have a local drive, so writing a temporary
file to the c:\foo folder will work. When the host is rebooted, you can expect it to be
gone, which is great if it really was temporary, and bad if you expected it to be present
after rebooting. (Remember – you might not have control of when the host reboots in the
cloud.)

The same applies if you run your app in containers. Each container will have some local
space to store the app itself, but a container can be killed off at any point in time, so you
need to handle this fact accordingly.

To get around this phenomenon, one of the basic services in cloud services is storage. In
Azure, the most frequently used service for this purpose is Azure Blob storage.

Storing and reading files in Azure Blob storage
If you skip all the complexities in terms of avoiding overwriting existing files, checking the
current folder, and everything else, you can get away with the following code snippet to
output a string to a file and read it back with output to the console:

Using System;
using System.IO;

namespace Chapter_13_FileStorage
{
 class Program
 {
 static void Main(string[] args)
 {
 File.WriteAllText("foo.txt", "Hello World");
 Console.WriteLine(File.ReadAllText("foo.txt"));
 }

542 Developing Cloud-Native Apps

 }
}

This code will also run in the cloud, but with the caveats mentioned that it might
disappear at any time.

If we were to do the same with Azure Blob storage, the steps would be slightly different:

1.	 Use the Azure portal to create a new storage account. To do so, you need to provide
the desired configuration for what kind of storage you want, whether to replicate the
data geographically, and the location you want it in:

Figure 13.9 – Azure storage account creation

2.	 There are many settings you can review, but for the purposes of this exercise, just
skip straight to Create.

Cloud storage versus local disk 543

3.	 Go to the resource you just created and step into the Storage Explorer option as
shown in Figure 13.9:

Figure 13.10 – Storage account blade in the Azure portal

4.	 Right-click on Blob Containers and choose Create blob container. Name it foo
and make sure the access level is set to private.

5.	 Go to the Access Keys blade and copy the connection string for key1, as you will
need it for your code.

6.	 Open up a command-line window, go to the root directory of your solution, and
type the following command:

dotnet add package Azure.Storage.Blobs

7.	 Modify and add the existing code, like this:

using System;
using System.IO;
using Azure.Storage.Blobs;
using Azure.Storage.Blobs.Models;

namespace Chapter_13_FileStorage
{
 class Program
 {
 static async System.Threading.Tasks.Task
Main(string[]

544 Developing Cloud-Native Apps

 args)
 {
 File.WriteAllText("foo.txt", "Hello World");
 Console.WriteLine(File.ReadAllText("foo.txt"));

 //Set up the connection and a blob reference
 string connString = "copied-from-Azure-Portal";
 BlobServiceClient blobServiceClient = new
 BlobServiceClient(connString);
 BlobContainerClient blobContainerClient =
 BlobServiceClient.GetBlobContainerClient("foo");
 BlobClient blobClient =
 BlobContainerClient.GetBlobClient("foo.txt");

 //Upload to Blob Storage
 using FileStream uploadFileStream = File.OpenRead

 ("foo.txt");
 await blobClient.UploadAsync(uploadFileStream,
 true); uploadFileStream.Close();

 //Download from Blob Storage
 BlobDownloadInfo dl = await blobClient.
 DownloadAsync();
 using (FileStream dlfs = File.OpenWrite(
 "fooBlob.txt"))
 {
 await dl.Content.CopyToAsync(dlfs);
 dlfs.Close();
 }
 Console.WriteLine(File.ReadAllText("fooBlob.txt"));
 }
 }
}

8.	 The console should print the same string value, Hello World, twice, if
everything worked.

At first glance, this might seem complicated – it will become easier once you've gotten
used to it. It is not apparent from a small example like this, but you will appreciate the
benefits of this once you start scaling out the number of components that need to access
the files.

Be aware that it does have implications in terms of performance, since things need to go
over the wire.

Introducing Infrastructure as Code (IaC) 545

Dealing with storage latency
Whether you run code on the computer on your desk or in the cloud, transferring data
to and from storage is not instantaneous. With small amounts of data, you're not likely to
notice, but a millisecond here and there adds up.

If your application requires a cache layer, you should look into solutions such as Azure
Cache for Redis, which stores data in-memory, and which reduces the need for involving
a disk. In Chapter 9, Containers, we took a look at using a pre-built image with Redis, and
this would be a good way to get going with such a solution.

We will not create the next web app or storage account in the portal, but rather we will
look at how we could use the cattle approach instead, when we take a look at IaC next.

Introducing Infrastructure as Code (IaC)
When referring to creating web apps through the Azure portal, we mentioned that the
better solution at scale is to look into IaC, but we didn't explain this further. So, what does
IaC actually mean?

Creating web apps through the Azure portal isn't so bad. You get a wizard that guides you
through it, and it will catch some errors as you go along; if you try to create a web app
with characters not valid for DNS, it will say so.

If you've ever worked with on-premises software installations or, for that matter, created
software to be installed by others, you might have run into less-friendly procedures. There
might be installation guides that need to be followed to the letter, and since you didn't
study the list of prerequisites, you find on page three of the wizard that you need to cancel
out to install a SQL server, before you can return to the installation.

Common to both of these approaches is the fact that they are prone to inconsistent and
incorrect deployments, and the fact that it simply does not scale if you want to create
larger numbers of installations and instances.

This is the main problem that IaC aims to solve. As we saw with build and release
definitions that you can check into your code, the same applies to IaC definitions.

There are two basic forms of IaC – imperative and declarative.

546 Developing Cloud-Native Apps

Imperative IaC
With this approach, you specify exactly what you want and in what order. It is great for
automation, but you need to handle the dependencies yourself. If you try to create a web
app without creating the resource group first, it will fail. Examples of imperative IaC
include Azure PowerShell and the Azure CLI. Going with the example of creating a web
app, it would look like this in PowerShell:

$location = "North Europe"

Creating Resource group
New-AzResourceGroup -Name rg-webapp -Location $location

Creating App Service Plan
New-AzAppServicePlan -Name webapp -Location $location
-ResourceGroupName rg-webapp -Tier Free

Creating web app
New-AzWebApp -Name webapp -Location $location -AppServicePlan
webapp -ResourceGroupName rg-webapp

In the Azure CLI, it will look as follows:

Creating Resource group
az group create -l northeurope -n rg-webapp

Creating App Service Plan
az appservice plan create -g rg-webapp-n webapp

Creating web app
az webapp create -g rg-webapp -p webapp -n webapp

There isn't a clear answer to which of these is best, and you will see that the syntax has
similarities, but for both you can see how it follows a recipe-looking approach.

Declarative IaC
With declarative IaC, you focus less on the how and more on the what. Instead of the step-
by-step approach, you define that you want a web app with a given set of attributes, specify
dependencies, and let the provisioning engine handle the rest. This means that in the case
of Azure being the cloud, you let the tooling figure out that the app service plan is in place
before creating the web app.

Introducing Infrastructure as Code (IaC) 547

The Azure native version of declarative IaC is ARM templates. The syntax is too verbose to
include a complete example, but it is JSON-based, and this would be the code needed for
the app service part of a deployment:

"resources": [
 {
 "type": "Microsoft.Web/serverfarms",
 "apiVersion": "2020-06-01",
 "name": "[variables('appServicePlanPortalName')]",
 "location": "[parameters('location')]",
 "sku": {
 "name": "[parameters('sku')]"
 },
 "kind": "linux",
 "properties": {
 "reserved": true
 }
 },

Since ARM can become quite complex, there are mixed feelings about it, but it has two
major things going for it:

•	 Since it's native to Azure, you will usually be provided with an example in the
portal, when creating a resource manually, so it's possible to use the wizard as a
helper for generating custom code.

•	 Being integrated with Azure, it automatically keeps track of the state of resources. If
you deploy a template building on a previous template, the engine will, for instance,
know that the resource group already exists and will not try to create it once more.

Another popular tool supporting both Azure and Amazon (and a couple of other
providers) is Terraform, by HashiCorp.

Once again, looking at creating a web app, a basic example could look like this:

provider "azurerm" {
 version = "~>2.0"
 features {}
}

resource "azurerm_resource_group" "rg" {
 name = "rg-webapp"
 location = "northeurope"
}

resource "azurerm_app_service_plan" "appserviceplan" {
 name = "webapp"

548 Developing Cloud-Native Apps

 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name

 sku {
 tier = "free"
 }
}

resource "azurerm_app_service" "webapp" {
 name = "webapp"
 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name
 app_service_plan_id = azurerm_app_service_plan.
appserviceplan.id
}

If you are not familiar with ARM templates, this looks more user friendly on the face of
it, but it is a new format to learn nonetheless. It also has the drawback of having to track
the state handling manually by storing the state in separate files. It is still a useful tool, and
Microsoft also provides Terraform examples for parts of the Azure documentation.

Taking it to the next level, there's also IaC as Code (not an official term, mind you). A
tool called Pulumi provides a coding layer on top of Terraform, enabling you to write C#
code for creating infrastructure with everything you're already familiar with from regular
programming.

This topic is large, and learning all the nuances of it may be too much for a programmer
focusing on building the apps and not the surrounding infrastructure. In smaller
organizations and one-man bands, you may be assigned responsibility for this part of the
cloud as well, so if you are that person, it could be valuable to dig further into this.

Rounding off the chapter, we will take a quick look at monitoring and health.

Learning about monitoring and health
A misconception of how things work in the cloud is that the cloud provider handles the
health of your app. We saw in the first part of this chapter the division of responsibility
going from IaaS to SaaS, where the provider takes greater responsibility as you move to
the right. If you go all the way to SaaS, it is true that the provider has to handle pretty
much everything that isn't a user error, but as stated earlier, the sweet spot for developers
is usually PaaS, where there is still some responsibility on your part.

Learning about monitoring and health 549

This means that if the response time of a web app as experienced by the user is not
acceptable, you need to be aware of this and figure out how to handle it. If storage in the
cloud goes down, you need to understand how to remediate this. The you part here could
be handled differently, depending on your organization, but in most instances, it is not
the cloud provider that will be responsible, even if they have mechanisms for helping you
along the way.

Web apps in Azure have some built-in tools at your disposal as shown in Figure 13.11:

Figure 13.11 – Azure web app Monitoring blade

The ones with log in the name are different ways to track down error conditions and are
useful for debugging purposes. Log stream will let you see the logs in real time, so if you
output errors to the console in your app and you are able to replicate the problem in the
user interface, this is very useful.

550 Developing Cloud-Native Apps

Metrics can be used both for planning and real-time decisions. You can see the number of
requests, the response time, how many HTTP-based errors are thrown, and so on:

Figure 13.12 – Azure Metrics for an Azure web app

Alerts also have multiple purposes. For instance, if the count of errors is too high, it
can send a text message and/or email that someone needs to take a look at the logs. It is
also possible to send details to other Azure services to invoke actions, based on a list of
conditions.

Related to monitoring, but not in the same menu section, you can find Scale up and Scale
out (under Settings). We explained the difference between the two in a previous section,
and this is natively supported. You can configure autoscale – this means that when a
metric is above a specified threshold for a time range (to avoid triggering on short spikes),
Azure will automatically add more resources to your web app.

To keep track of the health of your app, it helps if you use mechanisms in your code that
make it easier to set up things correctly in the cloud. We showed in Chapter 10, Taking
ASP.NET to the Cloud, how you could add a health endpoint to your app. This endpoint
should be added to the monitoring you set up in Azure (or AWS) and corresponding
alert mechanisms. To be fair, adding an endpoint such as this should be considered
on-premises as well, but the mechanism used for monitoring will possibly be different.

Remember what we said earlier – build things with the expectation that they will fail and
construct a health and monitoring strategy that helps you handle this.

Summary 551

Summary
Building cloud-native apps covers more than a simple relocation of bits from one data
center to another.

We did not dive deep into everything here, but we covered a broad range of topics, starting
with understanding what cloud native is all about and the general traits of on-premises
versus cloud. We covered the technical differences between databases and storage options,
a short DevOps intro, and, going outside the developer role, we briefly delved into topics
such as IaC, before rounding off with a few pointers regarding monitoring and health.

You should now have an understanding of why you would want to consider cloud
application models and what are the things that you need to consider, before using the
cloud. You have also learned the differences, compared to on-premises, with regard to the
mindset for the cloud and acquired an understanding of DevOps tools and services. Also,
you have understood why IaC might make life easier for building the services you need in
the cloud.

Even if you don't go all in on the cloud yet, there should be things here that can be applied
to your old-school software as well.

Questions
1.	 What are the three basic models for cloud computing?

2.	 What's the difference between schema on write and schema on read?

3.	 Why would you look into IaC?

Further reading
•	 AZ-900 Learning Path, by Microsoft, available at https://docs.microsoft.

com/en-us/learn/paths/az-900-describe-cloud-concepts/

•	 Introduction to the Microsoft Azure Well-Architected Framework, by Microsoft,
available at https://docs.microsoft.com/nb-no/learn/modules/
azure-well-architected-introduction/

https://docs.microsoft.com/en-us/learn/paths/az-900-describe-cloud-concepts/
https://docs.microsoft.com/en-us/learn/paths/az-900-describe-cloud-concepts/
https://docs.microsoft.com/nb-no/learn/modules/azure-well-architected-introduction/
https://docs.microsoft.com/nb-no/learn/modules/azure-well-architected-introduction/

Assessments
This section contains the answers to the questions from all the chapters.

Chapter 1 – Introduction to ASP.NET Core 5
1.	 .NET Classic was tightly coupled with the Windows operating system. This

prevented any cross-platform ambitions, and it was less than ideal for cloud usage
and microservices. .NET Core removed some of these barriers; it provides a cleaner
API surface and a leaner footprint.

2.	 Yearly releases are in November. Every 2 years, the release is Long-Term Support.

3.	 Web apps, based on the MVC pattern, are primarily made up of three components:
M (as in Model) is the data structure for the application; V (as in View) is for the
user interface; and C (as in Controller) represents the components that sit between
the model and view and shuffles the data between them.

4.	 These are properties that are only intended to be set at the time of object creation,
and they cannot be changed subsequently.

5.	 Yes, technically it is possible, but it is difficult and highly discouraged. Consider
implementing RESTful APIs or gRPC instead.

Chapter 2 – Cross-Platform Setup
1.	 Windows, Linux, MacOS, iOS, and Android.

2.	 This is a component of Windows that lets you run Linux within Windows, but it's
run natively, instead of as an emulation layer.

554 Assessments

3.	 A self-contained .NET app includes everything it needs to run, so it does not
require a separate installation of the .NET framework. This means it can also run on
a system that either does not have .NET installed, or one that has a different version
of the framework installed.

4.	 Compiling a cross-platform app makes the app run on a different platform, but
it does not ensure that all the code is correct for the platform it was compiled for.
This means that you, as a developer, must make the code itself compatible with the
platform, and not just the executable.

Chapter 3 – Dependency Injection
1.	 There are four types of dependency injections (DIs): constructor, method, property,

and view injections. The constructor injection is the most commonly used approach
for building ASP.NET Core applications.

2.	 There are three types of DI lifetimes: transient, scoped, and singleton.

Use a transient lifetime when you are unsure about how you should register the
service. This is the safest option to use, and it's probably the most commonly used
because services are created each time they are requested. This lifetime works
best for lightweight and stateless services because they are disposed at the end of
the request. Be aware, though, that a transient lifetime can potentially impact the
performance of your application, especially if you are working on a huge monolith
application, where the dependency reference is massive and complex.

Use a scoped lifetime when you want an object to be created once per client web
request. This is to ensure that related calls (to process dependent operations) will
be contained in the same object instance for each request. A good example (of
using a scoped lifetime) is registering a database service or context, such as Entity
Framework Core.

Use a singleton lifetime for services that are expensive to instantiate, because objects
will be stored in memory (and can be reused for all the injections within your
application). Services that are registered as a singleton will only be created once,
and all the dependencies will share the same instance of the same object, during the
entire lifetime of the application. A good example of using a singleton is registering
a logger or application configuration.

Chapter 5 – Getting Started with Blazor 555

3.	 The Add() method is the most commonly used approach to register services in the
DI container. The Add() method creates a registration for the service, and it can
potentially create duplicate registrations, which can impact the behavior of your
application. The TryAdd() method will only register services when there is no
implementation already defined for a given service type. This prevents you from
accidentally replacing previously registered services. So, if you want to safely register
your services, then consider using the TryAdd() method instead.

Chapter 5 – Getting Started with Blazor
1.	 You can create web applications using either Blazor Server or Blazor WebAssembly.

Blazor also provides support for building native and hybrid mobile applications,
which are called Blazor Mobile Bindings.

2.	 The big selling point for Blazor is not having to learn hardcore JavaScript in order
to build SPA web applications. Learning the framework itself is easy, as long as you
know basic HTML and CSS. It was designed to help C# developers take advantage
of their skills, to easily transition to the web paradigm when they are building
SPA-based web applications.

Chapter 8 – Working with Identity in ASP.NET
1.	 Authentication is about who you are, and authorization is about what you can do.

2.	 The recommended flow for most of these use cases is the authorization code flow
(with PKCE).

3.	 Azure AD B2C makes it easier to integrate with external identity providers, both
because it abstracts the implementation away from your code, and how it allows
fine-grained control of the sign-up and sign-in experience.

Chapter 9 – Getting Started with Containers
1.	 Containers are much smaller to store and faster to start than virtual machines. This

is because the abstraction of a container is at the operating system level, whereas the
abstraction of a virtual machine is at the hardware level.

2.	 Though Redis can support persistent volumes, it is not intended as a replacement
for a RDBMS.

556 Assessments

3.	 Yes! You can view images and containers, as well as easily view logs, ports, and
other settings.

4.	 Hopefully, you enjoyed this chapter as much as we enjoyed writing it.

Chapter 10 – Deploying to AWS and Azure
1.	 Virtual networks (VNETs) make up an Infrastructure as a Service offering that

allows you to define routing. This enables connections (between devices and
networks) to be granted or denied. For example, a VNET might have a rule that
allows only a specific IP address or port to receive requests from the internet.

2.	 Defining health endpoints is a common practice, and is supported by most
on-premises and cloud load balancers. Both AWS Elastic Beanstalk and Azure App
Services support health endpoint monitoring.

3.	 Both AWS and Azure have excellent tooling available in Visual Studio. We thought
it was important to show how ASP.NET Core and Visual Studio are widely
supported on more than just Azure.

4.	 We intentionally left any judgement out about which cloud provider is better. Both
cloud providers offer great support for hosting ASP.NET Core applications, ranging
from small organizations to large enterprises.

Chapter 11 – Browser and Visual
Studio Debugging

1.	 PWAs are delivered from a server, but they are only run in the browser.

2.	 Session and local storage are only visible to the running browser. In most
circumstances, the best choice would be a database to share information to a large
group of users.

3.	 No, all the major browsers support the developer tools.

4.	 Yes, Visual Studio can debug JavaScript and C# running in the same project.

Chapter 12 – Integrating with CI/CD
1.	 No, GitHub Actions is available in the Free plan. However, there is a limit to how

much you can store and how many times you can run your workflows.

2.	 GitHub can be used to store source code, documents, or any collection of files.

Chapter 13 – Developing Cloud-Native Apps 557

3.	 GitHub Actions provides several types of triggers that allow for the CI/CD process
to be split into multiple files.

4.	 CI/CD makes a lot of sense when deploying to cloud providers such as Azure and
AWS. In many ways, the cloud is ideal for CI/CD, and we'll cover this more in the
next chapter.

Chapter 13 – Developing Cloud-Native Apps
1.	 IaaS – Infrastructure as a Service, PaaS – Platform as a Service, and SaaS – Software

as a Service.

2.	 Schema on write is the classic SQL model where you need to adhere to rules when
inputting new data. Schema on write is the more flexible way to input dynamic data
and to define the structure when you use the data.

3.	 Infrastructure as code helps you to automate the creation of resources in a
repeatable and consistent way, at scale.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Modern Web Development with ASP.NET Core 3 -
Second Edition
Ricardo Peres

ISBN: 9781789619768

•	 Understand the new capabilities of ASP.NET Core 3.1

•	 Become well versed in how to configure ASP.NET Core to use it to its full potential

•	 Create controllers and action methods, and understand how to maintain state

•	 Implement and validate forms and retrieve information from them

•	 Improve productivity by enforcing reuse, process forms, and effective security measures

•	 Delve into the new Blazor development model

•	 Deploy ASP.NET Core applications to new environments, such as Microsoft Azure, AWS,
and Docker

https://www.packtpub.com/product/modern-web-development-with-asp-net-core-3-second-edition/9781789619768

560 Other Books You May Enjoy

Practical Microservices with Dapr and .NET
Davide Bedin

ISBN: 9781800568372

•	 Use Dapr to create services, invoking them directly and via pub/sub

•	 Discover best practices for working with microservice architectures

•	 Leverage the actor model to orchestrate data and behavior

•	 Use Azure Kubernetes Service to deploy a sample application

•	 Monitor Dapr applications using Zipkin, Prometheus, and Grafana

•	 Scale and load test Dapr applications on Kubernetes

https://www.packtpub.com/web-development/practical-microservices-with-dapr-and-net

Leave a review - let other readers know what you think 561

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book’s Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

Symbols
.NET

installing, on Linux 69-73
working with, in AWS Elastic

Beanstalk 447
.NET Classic 36
.NET Core

supportability strategy 25, 26
.NET Core 5

about 25, 36
learning with 34, 35

.NET Core compatibility, with
Azure App Service

reference link 455
.NET Core Debugging with WSL2 51
.NET Core RID Catalog

reference link 94
.NET cross-platform

about 63
ARM-based macs 63
working 63
working, on Linux 64
working, on macOS 64
working, on Windows 64

.NET features
modifying 44

removing 44
.NET framework

about 60
cross-platform, avoiding 61, 62
cross-platform, need for 61

.NET, installing on Ubuntu
reference link 70

.NET platform 20-25

.NET Standard 23

A
Active Directory Federation

Services (ADFS) 357
Active Server Pages (ASP) 22, 160
ADAL library 365
Advanced REST client 235
Amazon Web Services (AWS)

about 422
application, publishing from

Visual Studio 440-446
ASP.NET Core web application,

publishing to 433
regions 438, 439
resources, exploring 447

564 Index

user, creating to publish from
Visual Studio 434-438

working with 419
analogy concerning resources

versus on-premises resources 546, 548
application state

implementing 250
saving 466

ApplicationStorage.cs 472, 474
Application tab 489-491
ARM-based macs 63
artificial intelligence (AI) 421
ASP.NET

identity 342-345
middleware role 342-345

ASP.NET app
deploying, to AWS Elastic Beanstalk 447

ASP .NET Core
Dependency Injection (DI) 112
managed code, versus

unmanaged code 19, 20
overview 18, 19
reference link 173
running, in container 392-394

ASP.NET Core apps
deploying 459

ASP.NET Core Routing
reference link 330

ASP.NET Core SignalR 227
ASP.NET Core web application

creating 423, 425, 459
health endpoint, adding 429, 431-433
health endpoint, checking 425-427
publishing, to AWS 433
publishing, to Azure 447

attribute routing 311
authentication (AuthN)

about 332, 337
concepts 332, 333

authorization (AuthZ)
about 336
concepts 336, 337, 339-342

auto-implemented property feature 131
AWS Elastic Beanstalk

about 423
reference link 443

AWS Toolkit, for Visual Studio
installation link 420

Azure
about 423
ASP.NET Core web application,

publishing to 447
health endpoint, checking 455, 457, 458
Publish wizard, using to deploy 448
resources, exploring 459
working with 420, 421

Azure Active Directory (AAD)
about 352, 357
consent and permissions 363-368
integrating with 357-362
single tenancy, versus multi-tenancy 362

Azure App Service
about 423
instance, creating 450-455
resources, publishing to 448-450

Azure Blob storage
about 555
files, reading in 555-558
files, storing in 555-558

Azure DevOps 510
Azure DevOps, features

Index 565

Azure Artifacts 549
Azure Boards 549
Azure Pipelines 549
Azure Repos 549
Azure Test Plans 549

B
Base64

encoding 333-335
base reference

fixing, for website 525
basic authentication 333
bearer token 347
Blazor

login 475
reviewing 211

Blazor Extensions Logging
reference link 475

Blazor hosting models
Blazor Server 212
Blazor WebAssembly (WASM) 213-215
Mobile Blazor Bindings 215
reference link 215

Blazor Routing
reference link 245

Blazor Server
about 212, 216
cons 213
pros 212

Blazor Server application 227
Blazor Server project

application state, implementing 250, 251
creating 242-245
model, creating 246
Razor components, creating 251, 252

Blazor technologies

using 216
Blazor web application

executing 265-268
Blazor WebAssembly (WASM)

about 36, 213, 214, 216, 463
application, executing 276-278
cons 215
creating 269, 271
Index component, composing 272-276
model, creating 271, 272
pros 214
PWA app, uninstalling 278, 279

Blazor web framework 210
Bootstrap 255
browser

support, for developer tools 463
browser debugging tools

Application tab 489-491
Console tab 484-486
Elements tab 481-484
Network tab 488, 489
Sources tab 486, 487
using 480

browser session and local storage
accessing 467
ApplicationStorage.cs 472, 474
Blazor, login 475
counter page, modifying to

track count 476-480
storageHandling.js 468-472

business to consumer (B2C) 370

C
C# 9

about 37
init accessors 38

566 Index

init-only properties 38
learning with 34, 35
read-only fields 38
record class 39
top-level programs 37

C# Asynchronous Programming
reference link 330

C# code block 255
checkout repository

reference link 517
CI/CD workflow

actions, monitoring 521, 522
building, with GitHub

Actions 513, 515, 516
logging 526-528
need for 506
overview 506

C# language 26-34
cloud

costing 553, 554
versus on-premises characteristics 539

cloud computing
overview 421

cloud computing models
about 422
Infrastructure as a Service (IaaS) 422
Platform as a Service (PaaS) 422
Software as a Service (SaaS) 422

cloud computing providers
about 422
AWS 422
Azure 423

Cloud Native 36
cloud-native application 536-538
cloud, primary mechanisms

consumption-based pricing 553
fixed pricing 553

cloud storage

versus local disk 554
cloud update schedules 545
code-behind approach 45
code-first development

about 296
ASP.NET Core Web API, reviewing 296
data access, configuring 297
database migrations, managing 302
DTO classes, reviewing 305
Web API endpoints, creating 305
Web API project, creating 296, 297

Command-Line Interface (CLI) 220, 287
complex scenarios, handling

about 148
Add extension, versus TryAdd

extension 150, 151
multiple service implementations,

dealing with 152
service descriptors, using 148, 149
service registrations, removing 153

consent 363-365, 367, 368
Console tab 484-486
constructor injection 125, 186, 307
consumption-based pricing 553
container

about 79, 80, 386
ASP.NET Core, running in 392-394

containerization
overview 381-383

Container Orchestration Support
adding 403, 404

Continuous Delivery (CD)
506, 508, 509, 548

Continuous Deployment (CD) 509, 548
continuous deployment job

creating 519, 520
Continuous Improvements 37
Continuous Integration (CI) 506-508, 548

Index 567

continuous integration job
creating 516-518

counter page
modifying, to track count 476-480

Create, Read, Update, and
Delete (CRUD) 196

Cross-Origin Resource Sharing (CORS)
about 233
reference link 233

cross-platform
about 79, 80
creating, for mobile devices 95, 96
example 85-90, 92, 93

cross-platform code
background worker services 80-83, 85
creating 80
versus single-platform code 62

D
data access configuration

about 297
database ConnectionString,

setting 301, 302
data, seeding 299
DbContext, defining 300
DbContext, registering as service 301
entity models, creating 298, 299
Startup class, modifying 302

data annotation
about 173, 246, 272, 306
reference link 192

database-first development
about 285
database, creating 287
database operations, performing 291
dotnet ef dbcontext scaffold

command, using 288-290
Entity Framework Core,

integrating 286, 287
models. generating from

existing database 287
.NET Core console app, creating 286
record, adding 291, 292
record, deleting 295
record, querying 293-295
record, updating 292, 293
Scaffold-DbContext

command, using 288
database migrations

applying 303
creating 302
managing 302

database types
working with 541-543

Data Transfer Objects (DTOs) 305
DbContext

defining 183
declarative IaC 560-562
dependency 117
dependency injection containers 136-139
dependency injection (DI)

about 113, 114, 185, 226, 227, 302, 308
benefits 124
constructor injection 125
example 115-119
in ASP.NET Core 112
method injection 126-129
property injection 130-133
services, registering 123
types, reviewing 124
using 119-123
view injection 134-136

dependency lifetimes
about 140

568 Index

scoped service 144, 145
singleton service 146, 147
transient service 140-142, 144

development process 506
DevOps

about 548
role 548-552

DI container steps, for the
instantiation and configuration
of services registered

disposition 139
registration 139
resolution 139

Docker
about 383, 384
installing 387, 388
Redis, running on 389
working with 383

Docker, components
about 385
container 386
Docker Engine 386
Dockerfile 385, 386
image 385

Docker Compose file
Redis, adding to 405, 406

Docker Engine 386
Dockerfile 385, 386
Dockerfile approach 397, 398
Docker multi-container support

about 402
Container Orchestration

Support, adding 403, 404
Docker networks 411-413
environment variables, adding 409-411
isolated network, adding 406, 407
potential errors 408
Redis, adding to Docker

Compose file 405, 406
startup.cs file, modifying 407, 408

Docker networks 411-413
document object model (DOM) 481
DTO classes

reviewing 305

E
EF Core

installing 182
EF Core Logging Commands

reference link 329
EF Core Querying Data

reference link 329
EF Core Raw SQL

reference link 329
Elements tab 481-484
Entities 283
Entity Framework Core

about 216, 283
design workflows, reviewing 284, 285
reference link 329

Entity Framework Core (EF) 144
Entity Framework (EF) 181
environment variables

adding 409-411
ephemeral storage

versus persistent storage 555
Expression-Bodied Property

Accessors 132
extension methods

reference link 226

F
failure avoiding

Index 569

versus failure expecting 544, 545
failure expecting

versus failure avoiding 544, 545
federated identity

working with 369-372
Fiddler tool

reference link 48
files

reading, in Azure Blob
storage 555, 557, 558

storing, in Azure Blob storage 555-558
fixed pricing 553
FluentValidation

reference link 192
fork 511

G
GitHub

about 510
plans 510

GitHub Actions
about 512
CI/CD, building 513
CI/CD workflow, building 515, 516
features 528-531

GitHub API 531
GitHub Pages

about 513, 514
configuring 522-524

GitHub source code 421, 463
GitHub support

for CI/CD 512
Git, terminologies

branch 511
commit 511
fork 511
master 511

merge 511
pull 511
pull request 511
push 511
repository 511

Globally Unique Identifier
(GUID) 140, 299

gRPC framework 45

H
hardware virtualization 377-379
hashing function

working 335, 336
health endpoint, ASP.NET

Core web application
response status code 427-429

HelloWorld Android app
creating 100, 101, 103, 104

HelloWorld iOS application
creating 97-99

HTML helpers 169, 170, 172, 173
HTTP Delete endpoint implementation

about 327
controller, updating 328
DELETE endpoint, testing 328
interface, updating 327
service, updating 327

HTTP GET endpoint implementation
about 315
controller, updating 320, 323, 324
DTO, defining 315, 316, 321, 322
endpoint, testing 320, 321, 324
GET, implementing by ID 321
GET, implementing with

pagination 316-318
interface, updating 318, 322
service, updating 318, 319, 322, 323

570 Index

HTTP methods 305
HTTP POST endpoint implementation

about 305
API controller, creating 310-312
DTO, defining 306
interface, defining 307
POST endpoint, testing 312-315
service, implementing 307, 309
service, registering 310

HTTP PUT endpoint implementation
about 325
controller, updating 326
DTO, defining 325
interface, updating 325
PUT endpoint, testing 326
service, updating 325, 326

hub 227

I
identity provider 352
image 385
imperative IaC 560
Infrastructure as a Service (IaaS) 422, 537
Infrastructure as Code (IaC) 548, 559
Infrastructure as Code (IaC), forms

declarative IaC 560-562
imperative IaC 560

in-memory database
configuring 181, 220
data access layer, implementing

221-223, 225, 226
DbContext, defining 183
EF Core, installing 182
Entity Framework Core,

installing 220, 221
Startup class, modifying 227
test data, seeding in 183
view model, creating 182

in-memory databases
Program class, modifying 185
Startup class, modifying 185

IntelliSense support 323
IServiceCollection services

application services 138
framework-provided services 138

isolated network
adding 406, 407

J
JavaScript interoperability

(JS interop) 210
job 512
JSON Web Tokens (JWTs)

about 345, 347
header 346
payload 346

K
Kestrel 50

L
lambda expression

about 294
reference link 329

Language Integrated Query
(LINQ) 231, 283

learning database-first development 301
lift and shift migration 538
LINQ method-based query 319

Index 571

LINQ query expressions 323
Linux

about 64
debugging, on Windows with

Visual Studio 2019 104-108
.NET cross-platform, working 64
.NET, installing on 69-73

local disk
versus cloud storage 554

M
macOS

about 73-77
.NET cross-platform, working 64

managed code
versus unmanaged code 19, 20

method injection 126-129
microservices architecture

versus monolithic server 539
Microsoft Authentication

Library (MSAL) 365
middlewares 30
migrations

reference link 330
Mobile Blazor Bindings

about 215
reference link 215

mobile devices
cross-platform, creating for 95, 96

Model-View-Controller (MVC) pattern
about 23, 174, 175
to-do application, building with 173
versus Razor Pages 205

monolithic server
versus microservices architecture 539

Multi-Platform Native Apps 36
Multi-Platform Web Apps 37

multi-processing tasks 543, 544
multi-tenancy

versus single tenancy 362
MVC application

creating 175-179

N
Network tab 488, 489
NuGet Package Manager (NPM) 286

O
OAuth

about 345
basics 345

OAuth Authorization Code grant 354, 355
OAuth Client Credentials grant 352, 353
OAuth flows 352
OAuth Implicit Grant flow 355, 356
OAuth/OIDC transactions

token, issuing 347
token, validating 347

OAuth Resource Owner Password
Credentials (ROPC) 353

Object Relational Mapper
(ORM) 144, 283

On-Behalf-Of (OBO) 365
on-premises characteristics

versus cloud 539
on-premises resources

versus analogy concerning
resources 546-548

Open Container Initiative (OCI) 386
OpenID Connect (OIDC)

572 Index

about 345, 356
basics 345

OS/2. Windows 60

P
Package Manager Console (PMC) 286
parameter

null value, checking 43
pattern 23
pattern matching 44
permissions 363-365, 367, 368
permissions, types

application permissions 363
delegated permissions 363

persistent storage
versus ephemeral storage 555

Platform as a Service (PaaS) 422, 537
Platform Invocation Services

(P/Invoke) 62
Postman

about 235, 312
download link 312

Prettify JSON extension 52
Program class

modifying 185
Progressive Web Application (PWA)

about 214, 269, 463, 467
creating 463-465
key features 467

Proof Key for Code Exchange (PKCE) 355
property injection 130-133
ProtoBuf format 45
Public Key Infrastructure (PKI) 46

R

Razor code block 163, 254
Razor components

about 211, 244
creating 251, 252
EditTouristSpot component,

composing 252, 253, 255-258
Main component, composing

260, 262-264
NavMenu component,

updating 264, 265
ViewTouristSpot component,

composing 258, 259
Razor implicit syntax 135
Razor markup 211
Razor Pages

reviewing 197
structure 199, 200
to-do application, building with 197
versus Model-View-Controller

(MVC) 205
Razor Pages application

creating 198, 199
Razor Pages routing

reference link 197
Razor syntax

basics 162
data, rendering from view

model 166-169
HTML helpers 169, 170, 172, 173
simple data, rendering 163-165
tag helpers 169, 170, 172, 173

Razor view engine (Razor)
about 160, 161, 220, 244
benefits 162
reviewing 161, 162

real-time functionality
implementing, with SignalR 227-229

Index 573

record class
about 39
data members 41
inheritance and records 42
positional records 41
value-based equality 40, 41
with expressions 39

Redis
about 389
accessing 394, 396
adding, to Docker Compose

file 405, 406
container, adding 397
running, on Docker 389
working with 389-391

Redis, container
Dockerfile approach 397, 398
Visual Studio approach 399-402

Redis image 389
Remote Procedure Call (gRPC) 296
repository (repo)

about 511
copy, making of 512

repository secret 528
REpresentational State Transfer

(REST) 296
Resource Owner Password

Credentials (ROPC) 353

S
sample application

setting up 463
Scaffold-DbContext command,

parameters
connection string 288
output directory 288
provider 288

scalability
planning 540

scaling out
about 540
versus scaling up 540

scaling up
about 540
versus scaling out 540

schema on read 542
schema on write 542
scoped service 144
self-contained .NET apps

about 93
example 94
files, generating for Raspberry Pi 94, 95
files, generating for Windows Server 94

servers administration 546
service

implementing, for web API
communication 246-251

services administration 546
session stickiness 47, 48
setter injection. See property injection
SignalR

about 216
used, for implementing real-time

functionality 227-229
Single-Page Application (SPA)

161, 210, 355, 463
single-platform code

versus cross-platform code 62
single tenancy

versus multi-tenancy 362
singleton service 146, 147
Software as a Service (SaaS) 422, 537
Sources tab 486, 487
Startup class

modifying 185

574 Index

stateful applications 467
stateless applications 467
storageHandling.js 468-472
storage latency

dealing with 559
stored procedures 283
synchronicity tasks 543, 544
systemd 82
SystemX 531

T
tag helpers 169, 170, 172, 173
target-typed expressions 43
target typing 43
test data

seeding in 183, 184
to-do application

building, with MVC 173
building, with Razor Pages 197
in-memory database, configuring 181
running 180, 181, 188, 189
view, creating 187, 188

to-do application, controller
add item functionality,

implementing 189-192
creating 186
delete functionality,

implementing 195, 196
edit functionality,

implementing 193-195
to-do application, in-memory databases

test data, seeding in 184
to-do application, pages

creating 200
Index page, building 201, 202
item implementation, adding 203
item implementation, deleting 204, 205

item implementation, editing 203, 204
token

generating 348, 350
issuing 348-350
validating 350-352

token bloat 347
tourist spot application

backend application, creating 218-220
building 217
in-memory database, configuring 220
real-time functionality, implementing

with SignalR 227-229
web API endpoint, creating 229-232

transient services 140, 142-144
trusted certificate 46

U
UIs identity 372
UIs identity, approaches

iframe 372
popups 372
redirects 372

Unified .NET
with Single Base Class Library 36

unit tests 508
unmanaged code

versus managed code 19, 20

V
view injection 134-136
view model

creating 182
virtual machine (VM)

about 379, 382, 421, 538
installing 379

Index 575

Visual Studio
application launch and target,

controlling 492-494
approach 399-402
breakpoint, setting 497-499, 501
conditional breakpoints, using 501, 502
debugging 491
logging activity 494-496

Visual Studio 2019
for macOS 77, 79
used, for debugging Linux on

Windows 104-108
Visual Studio Code (VS Code)

download link 73
exploring 52-54

W
web API communication

service, implementing 246-250
web API endpoints

CORS, enabling 233
creating 229, 231, 232, 305
endpoints, testing 234-236
HTTP Delete endpoint,

implementing 327
HTTP GET endpoints,

implementing 315
HTTP POST endpoint,

implementing 305
HTTP PUT endpoint,

implementing 325
web apps

monitoring 562-564
WebAssembly (WASM) 211, 213, 475

Web Forms 45
Web Forms view engine 160
webhook 531
web server option

selecting 50, 52
web servers

about 45, 46
communication, troubleshooting 48-50
configuring 46

websites 45, 46
Windows

.NET cross-platform, working 64
about 64
Linux, debugging with Visual

Studio 2019 104-108
Windows Communication

Framework (WCF) 44
Windows Security Alert 388, 389
Windows Subsystem for

Linux (WSL) 65-69
Windows Terminal

about 54
implementing 54-56

WSL 2
installing 380

X
Xamarin.Forms 215

Y
YAML 513

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1 –
Crawling
	Chapter 01: Introduction to
ASP.NET Core 5
	Technical requirements
	Explaining ASP.NET Core
	Managed versus unmanaged code
	Introducing the .NET platform
	Supportability strategy

	Refreshing your C# knowledge
	What's new in .NET 5?
	What's new in C# 9?

	Understanding websites and web servers
	Web server configuration
	Certificate trust
	Session stickiness
	Troubleshooting communication with web servers
	Choosing a web server option

	Exploring Visual Studio Code
	Leveraging Windows Terminal
	Summary
	Questions
	Further reading

	Chapter 02: Cross-Platform Setup
	Technical requirements
	Leveraging the .NET framework
	Why cross-platform?
	Why not cross-platform?
	Combining cross-platform and single-platform code
	.NET cross-platform availability
	What cross-platform does not do for you

	Getting started on Windows, Linux, and macOS
	Windows
	Linux
	Windows Subsystem for Linux (WSL)
	macOS
	A word on cross-platform and containers
	Making your code cross-platform
	A more complicated cross-platform example
	Self-contained .NET apps
	Cross-platform for mobile devices

	Debugging Linux on Windows with Visual Studio 2019
	Summary
	Questions
	Appendix
	Installing your app as a Windows service – the advanced method

	Chapter 03: Dependency Injection
	Technical requirements
	Learning dependency injection in ASP.NET Core
	Understanding what DI is
	The common dependency problem
	Registering the service
	Benefits of DI

	Reviewing types of dependency injection
	Constructor injection
	Method injection
	Property injection
	View injection

	Understanding dependency injection containers
	Understanding dependency lifetimes
	Transient service
	Scoped service
	Singleton service

	Handling complex scenarios
	Service descriptors
	Add versus TryAdd
	Dealing with multiple service implementations
	Replacing and removing service registrations

	Summary
	Questions
	Further reading

	Chapter 04: Razor View Engine
	Technical requirements
	Understanding the Razor view engine
	Reviewing the Razor view engine

	Learning the basics of Razor syntax
	Rendering simple data
	Rendering data from a view model
	Introduction to HTML helpers and tag helpers

	Building a to-do application with MVC
	Understanding the MVC pattern
	Creating an MVC application
	Running the app for the first time
	Configuring in-memory databases
	Creating the to-do controller
	Creating a view
	Running the to-do app
	Implementing add item functionality
	Implementing edit functionality

	Building a to-do app with Razor Pages
	Reviewing Razor Pages
	Creating a Razor Pages application
	Understanding the Razor Pages structure
	Creating the to-do pages

	Differences between MVC and Razor Pages
	Summary
	Further reading

	Chapter 05: Getting Started
with Blazor
	Technical requirements
	Understanding the Blazor web framework
	Reviewing the different flavors of Blazor

	Five players, one goal
	Building a tourist spot application
	Creating the backend application
	Configuring an in-memory database
	Implementing real-time functionality with SignalR
	Creating the API endpoints

	Summary
	Questions
	Further reading

	Section 2 –
Walking
	Chapter 06: Exploring the Blazor Web Framework
	Creating the Blazor Server project
	Creating the model
	Implementing a service for web API communication
	Implementing the application state
	Creating Razor components
	Running the application

	Creating the Blazor Web Assembly project
	Creating the model
	Composing the Index component
	Running the application
	Uninstalling the PWA app

	Summary
	Further reading

	Chapter 07: APIs and Data Access
	Technical requirements
	Understanding Entity Framework Core
	Reviewing EF Core design workflows

	Learning database-first development
	Creating a .NET Core console app
	Integrating Entity Framework Core
	Creating a database
	Generating models from an existing database
	Performing basic database operations

	Learning code-first development
	Reviewing ASP.NET Core Web API
	Creating a Web API project
	Configuring data access
	Managing database migrations
	Reviewing DTO classes
	Creating Web API endpoints

	Summary
	Further reading

	Chapter 08: Working with Identity in ASP.NET
	Technical requirements
	Understanding authentication concepts
	Base64 encoding
	How hashing works

	Understanding authorization concepts
	The role of middleware in ASP.NET and identity
	OAuth and OpenID Connect basics
	JSON web tokens
	How to generate/issue a token
	How to validate a token

	Integrating with Azure Active Directory
	Understanding single tenancy versus multi-tenancy
	Understanding consent and permissions

	Working with federated identity	
	Summary
	Questions
	Further reading

	Chapter 09: Getting Started
with Containers
	Technical requirements
	Hardware virtualization

	Overview of containerization
	Getting started with Docker
	What is Docker?
	Installing Docker
	Windows Security Alert

	Running Redis on Docker
	Starting Redis

	Running ASP.NET Core in a container
	Accessing Redis
	Adding container support
	Docker multi-container support

	Summary
	Questions
	Further reading

	Section 3 –
Running
	Chapter 10: Deploying to AWS and Azure
	Technical requirements
	Working with AWS
	Working with Azure
	GitHub source code

	Overview of cloud computing
	Cloud computing models
	Cloud computing providers

	Creating a sample ASP.NET Core web application
	Adding a health endpoint

	Publishing to AWS
	Creating a user for publishing from Visual Studio
	Publishing from AWS

	Publishing to Azure
	Using the Publish wizard in Azure
	Azure next steps

	Summary
	Questions
	Further reading

	Chapter 11: Browser and Visual Studio Debugging
	Technical requirements
	Browser
	GitHub source

	Setting up the sample application
	Creating a progressive web application
	Saving the state of an application
	Understanding PWAs
	Accessing browser session and local storage

	Using debugging tools in the browser
	The Elements tab
	The Console tab
	The Sources tab
	The Network tab
	The Application tab

	Debugging in Visual Studio
	Controlling the application launch and target
	Logging activity
	Setting a breakpoint
	Using conditional breakpoints

	Summary
	Questions
	Further reading

	Chapter 12: Integrating
with CI/CD
	Technical requirements
	An overview of CI/CD
	Understanding why CI/CD

	Introducing GitHub
	Is GitHub free?
	Some Git terminology
	Making a copy of the repo
	GitHub support for CI/CD

	Building CI/CD using GitHub Actions
	What is GitHub Pages?
	Creating a CI/CD workflow
	Creating a continuous integration job
	Creating a continuous deployment job
	Monitoring actions
	Configuring GitHub Pages
	Fixing the base reference
	Logging the CI/CD workflow
	Next steps with GitHub Actions

	Summary
	Questions
	Further reading

	Chapter 13: Developing Cloud-Native Apps
	Technical requirements
	What makes an application cloud-native?
	Comparing characteristics of on-premises versus
the cloud
	Monolithic versus microservices architecture
	Planning for scalability
	Working with different database types
	Synchronicity and multi-processing tasks
	Avoiding failure versus expecting failure
	Understanding cloud update schedules
	Administration of servers and services
	Pets versus cattle

	Understanding the role of DevOps
	Understanding cost in the cloud
	Cloud storage versus local disk
	Ephemeral versus persistent storage
	Storing and reading files in Azure Blob storage
	Dealing with storage latency

	Introducing Infrastructure as Code (IaC)
	Imperative IaC
	Declarative IaC

	Learning about monitoring and health
	Summary
	Questions
	Further reading

	Assessments
	Chapter 1 – Introduction to ASP.NET Core 5
	Chapter 2 – Cross-Platform Setup
	Chapter 3 – Dependency Injection
	Chapter 5 – Getting Started with Blazor
	Chapter 8 – Working with Identity in ASP.NET
	Chapter 9 – Getting Started with Containers
	Chapter 10 – Deploying to AWS and Azure
	Chapter 11 – Browser and Visual
Studio Debugging
	Chapter 12 – Integrating with CI/CD
	Chapter 13 – Developing Cloud-Native Apps

	Other Books You May Enjoy
	Index

